首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In the presence of CoCl2 · 6H2O, the reaction of TCNE (tetracyanoethylene) with CH3OH forms a dicyanomethylacetate molecule, which has been obtained as one solvent molecule in one new compound {[Co(bpy)2CN2][(NC)2C-CO2CH3]} · 2H2O (1). It was characterized by IR spectra, UV-Vis spectra, and cyclic voltammogram. Its structure was determined by X-ray crystallography: 1 crystallizes in P2(1)/n with a = 13.3368(17), b = 12.5299(16), c = 16.074(2) Å, α = 90, β = 94.6320(10), γ = 90°, and Z = 2.  相似文献   

2.
Reaction between 3-((1R,2R)-2-{[1-(3,5-di-tert-butyl-2-hydroxy-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1a) or the derivative 3-((1R,2R)-2-{[1-(2-hydroxy-5-nitro-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1b) and metal halides MClx.yTHF (M = Zr, x = 4, y = 2; M = V, x = y = 3; M = Cr, x = y = 3), in THF, at −78 °C gives the metal complexes of general formula [MClx2-N,O-OC6H2R1R2C(H)N-C6H10-Im)2][Br]2 (where M = Zr, x = 2, R1 = R2 = tBu, 2; M = Zr, x = 2, R1 = H, R2 = NO2, 3; M = V, x = 1, R1 = R2 = tBu, 4; M = Cr, x = 1, R1 = R2 = tBu, 5; M = Fe, x = 0, R1 = R2 = tBu, 6; Im = 1-isopropyl-4-phenyl-3H-imidazol-1-ium-3-yl). 1H and 13C NMR spectroscopy of 2 and 3 indicate κ2-N,O-ligand coordination via the phenoxy-imine moiety with pendant imidazolium salt that is corroborated by a single crystal structure of 6. Compounds 2, 3, 4 and 5 were tested as precatalysts for ethylene polymerisation in the presence of methylaluminoxane (MAO) cocatalyst, showing low activity. Selected polymer samples were characterised by GPC showing multimodal molecular weight distributions.  相似文献   

3.
The linear polysilanes [{RR′2Si(CH2)ySi(n-hex)}x{HSi(n-hex)}1−x]n (1-4; R = 2-thienyl, R′ = H; R = Me, R′ = 2-thienyl; y = 2, 3) have been synthesized by hydrosilylation reaction between preformed poly(n-hexylsilane) and (2-thienyl)vinyldichlorosilane/allyl(2-thienyl)dichlorosilane/bis(2-thienyl)methylvinylsilane/allyl-bis(2-thienyl)methylsilane using AIBN as the free radical initiator. GPC analysis reveals a monomodal molecular weight distribution in each case with Mw = 2492-3280 and PDI = 1.18-1.44. The polysilane 1 (R = 2-thienyl, R′ = H, y = 2) acts as reducing agent towards silver tetrafluoroborate under mild conditions (cyclohexane, rt, 5 h) to afford spherical silver nanoparticles of size 8.4 ± 0.7 nm, as evident from the TEM and dynamic light scattering (DLS) studies. The silver nanoparticles in the polymer matrix exhibit surface plasmon absorption at 420 nm suggesting the donor-acceptor interaction between the thienyl group and the metal nanocluster surface. This stabilization effect provides long shelf life stability to the nanoparticles in solution with no sign of agglomeration even after three months.  相似文献   

4.
A new dabcodiium-templated nickel sulphate, (C6H14N2)[Ni(H2O)6](SO4)2, has been synthesised and characterised by single-crystal X-ray diffraction at 20 and −173 °C, differential scanning calorimetry (DSC), thermogravimetry (TG) and temperature-dependent X-ray powder diffraction (TDXD). The high temperature phase crystallises in the monoclinic space group P21/n with the unit-cell parameters: a = 7.0000(1), b = 12.3342(2), c = 9.9940(2) Å; β = 90.661(1)°, V = 862.82(3) Å3 and Z = 2. The low temperature phase crystallises in the monoclinic space group P21/a with the unit-cell parameters: a = 12.0216(1), b = 12.3559(1), c = 12.2193(1) Å; β = 109.989(1)°, V = 1705.69(2) Å3 and Z = 4. The crystal structure of the HT-phase consists of Ni2+ cations octahedrally coordinated by six water molecules, sulphate tetrahedra and disordered dabcodiium cations linked together by hydrogen bonds. It undergoes a reversible phase transition (PT) of the second order at −53.7/−54.6 °C on heating-cooling runs. Below the PT temperature, the structure is fully ordered. The thermal decomposition of the precursor proceeds through three stages giving rise to the nickel oxide.  相似文献   

5.
A series of new palladacycloalkanes of formula cis-[PdL2(CH2)n] (9. n = 6, L = PPh3; 10. n = 6, L2 = dppe; 11. n = 8, L = PPh3; 12. n = 8, L2 = dppe) have been prepared by two routes. In the first route, the precursor bis(1-alkenyl) complexes cis-[PdL2((CH2)nCHCH2)2] (1. n = 2, L = PPh3, 2. n = 2, L2 = dppe, 3. n = 3, L = PPh3, 4. n = 3, L2 = dppe) were allowed to react with Grubb’s 2nd generation catalyst to give the palladacycloalkenes, cis-[PdL2(CH2)nCHCH(CH2)n] (5. n = 2, L = PPh3, 6. n = 2, L2 = dppe, 7. n = 3, L = PPh3, 8. n = 3, L2 = dppe), which were then hydrogenated to the palladacycloalkanes, 9-12. In the second route, the di-Grignard reagents BrMg(CH2)nMgBr (n = 6, 8) were reacted with the palladium complex [PdCl2(COD)] followed by immediate ligand displacement to form the respective palladacycloalkanes 10 and 12. The complexes obtained were characterized by a range of spectroscopic and analytical techniques. Thermal decomposition studies were carried out on the palladacycloalkanes 9-12 and the main organic products shown to be 1-alkenes and 2-alkenes.  相似文献   

6.
Using biprotonated dabco (1,4-diazabicyclo[2.2.2]octane) or pipz (piperazine) as counter cations, mixed-ligand fluoromanganates(III) with dimeric anions could be prepared from hydrofluoric acid solutions. The crystal structures were determined by X-ray diffraction on single crystals: dabcoH2[Mn2F8(H2O)2]·2H2O (1), space group P21, Z = 2, a = 6.944(1), b = 14.689(3), c = 7.307(1) Å, β = 93.75(3)°, R1 = 0.0240; pipzH2[Mn2F8(H2O)2]·2H2O (2), space group , Z = 2, a = 6.977(1), b = 8.760(2), c = 12.584(3) Å, α = 83.79(3), β = 74.25(3), γ = 71.20(3)°, R1 = 0.0451; (dabcoH2)2[Mn2F8(H2PO4)2] (3), space group P21/n, Z = 4, a = 9.3447(4), b = 12.5208(4), c = 9.7591(6) Å, β = 94.392(8)°, R1 = 0.0280. All three compounds show dimeric anions formed by [MnF5O] octahedra (O from oxo ligands) sharing a common edge, with strongly asymmetric double fluorine bridges. In contrast to analogous dimeric anions of Al or Fe(III), the oxo ligands (H2O (1,2) or phosphate (3)) are in equatorial trans-positions within the bridging plane. The strong pseudo-Jahn-Teller effect of octahedral Mn(III) complexes is documented in a huge elongation of an octahedral axis, namely that including the long bridging Mn-F bond and the Mn-O bond. In spite of different charge of the anion in the fluoride phosphate, the octahedral geometry is almost the same as in the aqua-fluoro compounds. The strong distortion is reflected also in the ligand field spectra.  相似文献   

7.
The crystal structures of two new Sc(III) porphyrins, [Sc(TPP)Cl]·2.5(1-chloronaphthalene), (5,10,15,20-tetraphenylporphyrin)-chloro-scandium(III)·2.5(1-chloronaphthalene) solvate, (Mo Kα, 0.71073 Å, triclinic system  = 9.9530(2) Å, b = 15.4040(3) Å, c = 17.7770(3) Å, α = 86.5190(10)°, β = 89.7680(10)°, γ = 86.9720(10)°, 13101 independent reflections, R1 = 0.0712) and the dimeric [μ2-(OH)2(Sc(TPP))2], bis-(μ-hydroxo)-(5,10,15,20-tetraphenylporphyrin) scandium(III) (Mo Kα, 0.71073 Å, monoclinic system C2, a = 24.2555(16) Å, b = 11.1598(7) Å, c = 25.6468(17) Å, β = 91.980(2)°, 13084 independent reflections, R1 = 0.0485) are reported. In [Sc(TPP)Cl] the metal is five-coordinate and the porphyrin is domed with the metal displaced by 0.63 Å from the mean porphyrin towards the axial Cl ligand. The average Sc-N bond length is 2.143(3) Å, which is shorter than the average bond length of previously reported structures. Two of the phenyl rings are nearly orthogonal to the porphyrin core and the other two are significantly tilted because of contacts with 1-chloronaphthalene solvent molecules, and the phenyl rings of neighbouring porphyrins. In [μ2-(OH)2(Sc(TPP))2] both porphyrins are domed, with the metal displaced from the mean porphyrin plane towards the bridging hydroxo ligands. The average Sc-N bond length is 2.197(12) Å, which is in the upper range of Sc-N bond lengths in known Sc(III) porphyrins but not dissimilar to the average Sc-N bond lengths in another other bis-μ2-hydroxo Sc(III) porphyrin, [μ2-(OH)2(Sc(OEP))2]. One porphyrin is rotated relative to the upper porphyrin by 25° due to steric contacts between the phenyl substituents. We have used these new structures to re-evaluated our previously reported molecular mechanics force field parameters for modelling Sc(III) porphyrins using the MM2 force field; the training set was augmented from two to seven structures by using all available Sc(III) porphyrin structures and the two new structures. The modelling reproduces the porphyrin core very accurately; bond lengths are reproduced to within 0.01 Å, bond angles to within 0.5° and torsional angles to within 2°. The optimum parameters for modelling the Sc(III)-N bond lengths, determined by finding the minimum difference between the crystallographic and modelling mean bond lengths with the aid of artificial neural network architectures, were found to be 0.90 ± 0.03 mdyn Å−1 for the bond force constant and2.005 ± 0.005 Å for the strain-free bond length. Modelling the seven Sc(III) porphyrins with the new parameters gives an average Sc-N bond length of 2.182 ± 0.018 Å, indistinguishable from the crystallographic mean of 2.181 ± 0.024 Å.  相似文献   

8.
A new pentacoordinated ferrous compound [TPAFeCl]+ (TPA = tris(2-pyridylmethyl)amine) was synthesized from the reaction between H3TPA(ClO4)3 and Fe(PnPr3)2Cl2 in MeCN. The unique trigonal bipyramidal [TPAFeCl]+ complex was characterized as a S = 2 high spin complex based on the crystallographic structure, magnetic susceptibility, 1H NMR spectrum and semi-empirical ZINDO/S calculations. Crystal of [TPAFeCl]2(FeCl4)(MeCN)2 was monoclinic with a = 12.019(2) Å, b = 27.550(5) Å, c = 14.138(2) Å, β = 94.168(3)°, V = 4668.9(13) Å3, space group C/c, and the unit cell contained a racemic mixture of Δ and Λ isomers with ferrous tetrachloride anion.  相似文献   

9.
The first layered hydroxylammonium fluorometalates, (NH3OH)2CuF4 and (NH3OH)2CoF4, were prepared by the reaction of solid NH3OHF and the aqueous solution of copper or cobalt in HF. Both compounds crystallize in monoclinic, P21/c, unit cell with parameters: a = 7.9617(2) Å, b = 5.9527(2) Å, c = 5.8060(2) Å, β = 95.226(2)° for (NH3OH)2CuF4 and a = 8.1764(3) Å, b = 5.8571(2) Å, c = 5.6662(2) Å, β = 94.675(3)° for (NH3OH)2CoF4, respectively. Magnetic susceptibility was measured between 2 K and 300 K giving the effective Bohr magneton number of 2.1 for Cu and 5.2 BM for Co. At low temperatures both complexes undergo a transition to magnetically ordered phase. The thermal decomposition of both compounds was studied by TG, DSC and X-ray powder diffraction. The thermal decomposition of (NH3OH)2CuF4 is a complex process, yielding NH4CuF3 as an intermediate product and impure Cu2O as the final residue, while (NH3OH)2CoF4 decomposes in two steps, obtaining CoF2 after the first step and CoO as the final product.  相似文献   

10.
A coordination polymer [Cu(nip)(phen)]n was hydrothermally synthesized by the reaction of Cu(NO3)2 with 5-nitroisophthalic acid and phen. Single-crystal structure analysis showed that the complex crystallized in the monoclinic space group P21/c; a = 10.6566(13); b = 12.5931(15); c = 13.0514(16) Å; β = 95.474(2)°, V = 1743.5(4) Å3; Z = 4. The standard molar enthalpy of formation of the complex was determined to be −554 ± 11 kJ mol−1.  相似文献   

11.
The one-pot reactions of ferrocenecarboxaldehyde, W(CO)4(pip)2 (pip = piperidine) and either 2-(aminomethyl)pyridine or 2-(2-aminoethyl)pyridine lead to clean formation of pyridine imine products W(CO)42-NC5H4CHNCH2C5H4FeCp) (1) and W(CO)42-NC5H4C2H4NCHC5H4FeCp) (2), respectively. Crystal structures of the two compounds show that in 1 the imine double bond has migrated so that it is conjugated with the pyridine ring while in 2 the imine double bond remains conjugated with the cyclopentadienyl ring. This finding is reinforced by a comparison of dihedral angles in each molecule. IR, NMR and electronic spectra each highlight the differences between the two compounds. Crystal data for C21H16FeN2O4W (1): monoclinic P2(1)/c, a = 12.768(2) Å, b = 13.593(2) Å, c = 12.981(2) Å, β = 119.46°, V = 1961.6(4) Å3, Z = 4; C22H18FeN2O4W (2): monoclinic P2(1)/c, a = 16.759(1) Å, b = 8.8612(7) Å, c = 13.802(1) Å, β = 95.998(1)°, V = 2038.4(3) Å3, Z = 4.  相似文献   

12.
The oxidation of a series of substituted pyridines by dimethyldioxirane (1) produced the expected N-oxides in quantitative yields. The second order rate constants (k2) for the oxidation of a series of substituted pyridines (2a-g) by dimethyldioxirane were determined in dried acetone at 23 °C. An excellent correlation with Hammett sigma values was found (ρ = −2.91, r = 0.995). Kinetic studies for the oxidation of 4-trifluoromethylpyridine by 1 were carried out in the following dried solvent systems: acetone (k2 = 0.017 M−1 s−1), carbon tetrachloride/acetone (7:3; k2 = 0.014 M−1 s−1), acetonitrile/acetone (7:3; k2 = 0.047 M−1 s−1), and methanol/acetone (7:3; k2 = 0.68 M−1 s−1). Kinetic studies of the oxidation of pyridine by 1 versus mole fraction of water in acetone [k2 = 0.78 M−1 s−1 (χ = 0) to k2 = 11.1 M−1 s−1 (χ = 0.52)] were carried out. The results showed the reaction to be very sensitive to protic, polar solvents.  相似文献   

13.
14.
N-n-Propyl-2-pyridylmethanimine, 1, N-n-octyl-2-pyridylmethanimine, 2, N-n-lauryl-2-pyridylmethanimine, 3, and N-n-octadecyl-2-pyridylmethanimine, 4 have been used in conjunction with copper(II) bromide and azo initiators for the reverse atom transfer radical polymerisation of a range of methacrylates. AIBN to CuIIBr2 ratios of 0.5:1, 0.75:1 and 1:1 give PMMA with Mn 11 500 g mol−1 (PDi = 1.24) (at 22% conversion), 12 500 g mol−1 (PDi = 1.06) (at 83% conversion) and 10 900 g mol−1 (PDi = 1.11) (at 84% conversion), respectively. A CuIIBr2 complex is demonstrated to be needed at the start of the reaction for good control over molecular weight and polydispersity as reactions using Cu(I)Br as catalyst yielded PMMA of Mn 31 000 g mol−1 (PDi = 2.90), reactions with no copper yield PMMA of Mn 33 000 g mol−1 (PDi = 2.95). The RATRP of styrene was carried out using CuIIBr2 as catalyst. AIBN to CuIIBr2 ratio of 0.5:1, 0.75:1 and 1:1 gave PS with Mn = 12 400 g mol−1 (PDi = 1.27) at low conversion, Mn = 15 500 g mol−1 (PDi = 1.11) and 12 400 g mol−1 (PDi = 1.38), respectively at ∼85% conversion. A series of block copolymers of MMA with BMA, BzMA and DMEAMA (15 600 g mol−1 (PDi = 1.18), 13 300 g mol−1 (PDi = 1.14) 15 300 g mol−1 (PDi) = 1.16), using a PMMA macroinitiator were prepared. Emulsion polymerisation of MMA using [initiator]:[Cu(II)Br2] ratio = 0.5:1 with Brij surfactant gave a linear increase of Mn with respect to conversion, final Mn = 112 800 g mol−1 (PDi = 1.42). Further reactions were carried out with [initiator]:[Cu(II)Br2] ratio = 0.75:1 and 1:1. Both giving PMMA with Mn ∼ 32 000 g mol−1 (PDi ∼ 2.4). These reactions exhibit no control, this is because the azo initiator is present in excess and all of the monomer is consumed by a free radical polymerisation as opposed to a controlled reaction. Particle size analysis (DLS) showed the particle size between 160 and170 nm in all cases.  相似文献   

15.
Hydrated layered crystalline barium phenylarsonate, Ba(HO3AsC6H5)2·2H2O was used as host for intercalation of n-alkylmonoamine molecules CH3(CH2)n-NH2 (n = 1-4) in aqueous solution. The amount intercalated (nf) was followed batchwise at 298 ± 1 K and the variation of the original interlayer distance (d) for hydrated barium phenylarsonate (1245 ppm) was followed by X-ray powder diffraction. Linear correlations were obtained for both d and nf as a function of the number of carbon atoms in the aliphatic chain (nc): d = (2225 ± 32) + (111 ± 11)nc and nf = (2.28 ± 0.15) − (11.50 ± 0.03)nc. The exothermic enthalpies of intercalation increased with nc, which was derived from the monomolecular amine layer arrangements with the longitudinal axis inclined by 60° to the inorganic sheets. The intercalation was followed by titration with amine at the solid/liquid interface and gave the enthalpy/number of carbons correlation: ΔH = −(7.25 ± 0.40) − (1.67 ± 0.10)nc. The negative Gibbs free energies and positive entropic values reflect the favorable host/guest intercalation processes for this system.  相似文献   

16.
17.
Pereira LA  Amorim I  da Silva JB 《Talanta》2006,68(3):771-775
A procedure for the determination of cadmium, chromium, and lead in marine sediment slurries by electrothermal atomic absorption spectrometry is proposed. Slurry was prepared by mixing 10 mg of ground sample with particle size smaller than 50 μm completed to the weight of 1.0 g with a 3% nitric acid and 10% hydrogen peroxide solution. The slurry was maintained homogeneous with an aquarium air pump. For cadmium, the best results were obtained using iridium permanent with optimum pyrolysis and atomization temperatures of 400 and 1300 °C, respectively, a characteristic mass, mo (1% absorption), of 2.3 pg (recommended 1 pg). Without modifier use, zirconium, ruthenium, and rhodium mo were 3.4, 4.1, 4.6, and 4.8 pg, respectively. For chromium, the most sensitive condition was obtained with zirconium permanent with optimum pyrolysis and atomization temperatures of 1500 and 2500 °C, mo of 6.6 pg (recommended 5.5 pg); and without modifier use, rhodium, iridium, and ruthenium mo were 5.3, 8.8, 8.8, and 8.9 pg, respectively. For lead, the best modifier was also zirconium, mo of 8.3 pg for the optimum pyrolysis and atomization temperatures of 600 and 1400 °C, respectively, (recommended mo of 9.0 pg). For iridium, ruthenium, without modifier, and rhodium, mo were 14.7, 15.5, 16.5, and 16.5 pg, respectively. For all the modifiers selected in each case, the peaks were symmetrical with r2 higher than 0.99. Being analyzed (n = 10), two marine sediment reference materials (PACS-2 and MESS-2 from NRCC), the determined values, μg l−1, and certified values in brackets, were 2.17 ± 0.05 (2.11 ± 0.15) and 0.25 ± 0.03 (0.24 ± 0.01) for cadmium in PACS-2 and MESS-2, respectively. For chromium in PACS-2 and MESS-2 the values were 94.7 ± 5.6 (90.7 ± 4.6) and 102.3 ± 10.7 (106 ± 8), respectively. Finally, for lead in PACS-2 and MESS-2, the results obtained were 184 ± 7 (183 ± 8) and of 25.2 ± 0.40 (21.9 ± 1.2), respectively. For cadmium and lead in both samples and chromium in PACS-2, calibration was accomplished with aqueous calibration curves. For chromium in MESS-2, only with the standard addition technique results were in agreement with the certified ones. The limits of detection (k = 3, n = 10) obtained with the diluents were 0.1, 3.4, and 3.6 μg l−1 for cadmium, chromium, and lead, respectively.  相似文献   

18.
Treatment of [M(H2Li)] with UCl4 in pyridine led to the formation of the dinuclear complexes [MLi(py)UCl2(py)2] and/or [Hpy][MLi(py)UCl3] [Li = N,N′-bis(3-hydroxysalicylidene)-R, R = 1,2-phenylenediamine (i = 1), R = trans-1,2-cyclohexanediamine (i = 2), R = 2-amino-benzylamine (i = 3), R = 1,3-propanediamine (i = 4), R = 2,2-dimethyl-1,3-propanediamine (i = 5); M = Cu or Ni]. The crystal structures show that the 3d and 5f ions occupy, respectively, the N2O2 and O4 cavities of the Schiff base ligand, the U4+ ion adopting a dodecahedral or pentagonal bipyramidal configuration in the neutral and anionic complexes, respectively.  相似文献   

19.
The preparation of the potassium salt of hexathiocyanate Re(IV) as a pure and crystalline solid is described. The crystal structure for [{K(H2O)2}2{Re(NCS)6}] (P21/c, a = 8.29132(8) Å, b = 15.0296(2) Å, c = 8.5249(1) Å, β = 90.885(1)°, V = 1062.21(2) Å3) revealed the formation of a 3-D coordination polymer based on K-S linkages. This organization leads to rather short intermolecular S···S contacts. The magnetic behavior for the compound is characterized by substantial antiferromagnetic interactions (with Curie-Weiss parameters C = 1.93 cm3mol−1 and θ = −171 K) that in turn lead to a weak ferromagnet with TC = 13 K.  相似文献   

20.
Two quinoxaline derivatives pqCH3 and pqCl (where pq stands for 2-(2′-pyridyl)quinoxaline) were prepared by condensation of 2-acetyl pyridyl with 2-amino-4-methylphenylamine or 2-amino-4-chlorophenylamine, correspondingly and were studied spectroscopically and electrochemically, in correlation with the originally reported pq. Their novel corresponded complexes namely, fac-[Re(CO)3Cl(L)] (where L = pqCH32 and pqCl 3) were synthesized, characterized, studied and compared to Re(CO)3Clpq, 1. Complex 2 crystallizes in space group C2/c with a = 20.4476(17) Å, b = 15.4521(13) Å, c = 15.2887(13) Å, β = 126.1210(11)°, Z = 8 and V = 3902.0(6) Å3. The substitution of -H by -CH3 or -Cl at 6-position of pq has a minor electronic effect on the pyridyl ring of the ligands, but seems to influence the quinoxaline moiety enough to alter the spectroscopical and electrochemical features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号