首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel amperometric glucose biosensor has been fabricated on the basis of aligned ZnO nanorod film grown on ITO directly. Glucose oxidase immobilized on the surface of ZnO nanorods are very stable with highly catalytic activity during the measurements, Because of the novel properties of ZnO, such as biocompatibility, non-toxicity, chemical stability, electrochemical activities and high isoelectric point, and the protection effect of Nifion membrane cast on the surface of the film. This biosensor displays excellent analytical performance over a wide linear range along with good selectivity. Interference from uric acid and ascorbic acid which usually coexist with glucose in practical samples has been found to be negligible. This method may be used to construct other amperometric biosensors using aligned nanorod/nanowire films.  相似文献   

2.
《中国化学快报》2021,32(10):3185-3188
In this research, a novel bird nest-like zinc oxide (BN-ZnO) nanostructures were prepared by a simple solvothermal method. A sensitive electrochemical glucose biosensor was for the first time developed based on the immobilization of glucose oxidase (GOx) on nanostructured BN-ZnO modified electrode. The BN-ZnO nanostructure and the resultant biosensor were characterized by scanning electron microscope, X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and electrochemical impedance spectroscopy. BN-ZnO nanostructures have large specific surface area and can load large amounts of GOx molecules. Meanwhile, BN-ZnO provides an excellent microenvironment to retain the native bioactivity of enzymes and to promote direct electron transfer between GOx and electrode surface. The proposed biosensor shows a wide linear range of 0.005–1.6 mmol/L, high sensitivity of 15.6 mA L mol−1 cm−2 with a low detection limit of 0.004 mmol/L. The resulting biosensor also shows excellent selectivity, acceptable stability and reproducibility, and can be successfully applied in the detection of glucose in human serum samples at −0.37 V.  相似文献   

3.
This review deals with recent advances in the field of electrochemical sensing and biosensing with nanoelectrode ensembles (NEEs) and nanoelectrode arrays (NEAs), focusing mainly on articles published since 2015. At first, a brief introduction on the properties and possible advantages which characterize electroanalytical signals at the NEE/NEA is presented, followed by an overview on the most recent theoretical advances concerning the modeling of relevant electrochemical signals. Novel nanofabrication methods and nanoelectrode materials are discussed together with original (bio)funtionalization procedures, suitable to obtain more sensitive and reliable sensors. Advanced applications of NEE/NEA-based sensors in the biological and biomedical field are presented, including their integration with living cells and application for neurochemical studies. Advances, present limits, and prospects for research in the area are finally discussed. As far as future research trends are concerned, on the one hand, there is a need for development of theoretical models which take into account specific effects that can rule electrochemistry with arrays of nanosized electrodes, such as double layer and quantum mechanical effects. On the other hand, frontier studies concerning the application of the NEE/NEA to the biomedical and neurochemical fields can open new tracks both to fundamental knowledge and application.  相似文献   

4.
The abuse of antibiotics will cause an increase of drug-resistant strains and environmental pollution,which in turn will affect human health.Therefore,it is important to develop effective detection techniques to determine the level of antibiotics contamination in various fields.Compared with traditional detection methods,electrochemical sensors have received extensive attention due to their advantages such as high sensitivity,low detection limit,and good selectivity.In this mini review,we summarized the latest developments and new trends in electrochemical sensors for antibiotics.Here,modification methods and materials of electrode are discussed.We also pay more attention to the practical applications of antibiotics electrochemical sensors in different fields.In addition,the existing problems and the future challenges ahead have been proposed.We hope that this review can provide new ideas for the development of electrochemical sensors for antibiotics in the future.  相似文献   

5.
Nitric oxide (NO) and nitrite are of significant importance in clinical/biomedical research and in quality control applications for the food industry. Electrochemical sensing of NO and nitrite has been extensively pursued over the last two years. Efficient interfaces based on functional nanomaterials and bioactive molecules (e.g. metals, metal oxides, carbon-based nanomaterials, conducting polymers, and heme proteins) have been widely explored toward sensor development. Herein, we review the most recent advances in the electrochemical sensing of NO and nitrite, while the critical roles of nanomaterials in the design of advanced electrochemical sensors are highlighted.  相似文献   

6.
Ammonia nitrogen, consisting of un-ionized ammonia and ammonium, is a key parameter for studying the nitrogen cycle and indicating water quality. The measurement of these parameter concentrations is vital for the adequate monitoring of aquatic environments. Here, we review studies that focus on analytical methods for determining ammonia nitrogen in natural waters that were published between 2014 to mid-2019. These methods include spectrophotometric, fluorometric and electrochemical methods, and the features of these different analytical methods are reviewed. In addition, the outlook for future development is discussed.  相似文献   

7.
The construction of electrostatically self-assembled intelligent nanostructures on electrodes with redox enzyme layers and redox polymer molecular wires defined in space allowed the analysis of redox charge transport from the redox enzyme to the electrode along nanometric distances. Recent results on the electrical connection of enzymes to electrodes and perspectives of generating electrical signals from molecular recognition in integrated enzyme electrodes are discussed.  相似文献   

8.
In this review, the basic principles and apparatus of ECL imaging were briefly introduced at first. Then several latest and representative applications of ECL imaging based on nanomaterials and micro-/nanostructures were overviewed. Finally, the superiorities and challenges in ECL imaging for further development were discussed.  相似文献   

9.
Recently, the field of highly-ordered mesoporous and macroporous thin films coated onto solid electrode surfaces has begun to receive attention due to their great interest for electrochemical analysis. This review highlights the features of both electricallyconducting and non-conducting organized layers, which are applicable to designing electrochemical sensors, and the methods applied to construct these novel nanomaterials.We emphasize methods based on use of self-assembled colloidal templates (e.g., surfactants or nanoparticles), around which the materials of interest are formed. We then describe their basic electrochemical behavior and discuss their possible use as electrochemical sensors and biosensors, mostly in the particular case of structured metallic layers, functionalized mesoporous silica films, and some other continuous three-dimensional ordered porous structures.  相似文献   

10.
Electrochemiluminescence (ECL) is a kind of luminescent phenomenon caused by electrochemical reactions. Based on the advantages of ECL including low background, high sensitivity, strong spatiotemporal controllability and simple operation, ECL imaging is able to visualize the ECL process, which can additionally achieve high throughput, fast and visual analysis. With the development of optical imaging technique, ECL imaging at micro- or nanoscale has been successfully applied in immunoassay, cell imaging, biochemical analysis, single-nanoparticle detection and study of mechanisms and kinetics of reactions, which has attracted extensive attention. In this review, the basic principles and apparatus of ECL imaging were briefly introduced at first. Then several latest and representative applications of ECL imaging based on nanomaterials and micro-/nanostructures were overviewed. Finally, the superiorities and challenges in ECL imaging for further development were discussed.  相似文献   

11.
The self-assembly process of block copolymers (BCPs) in solution has been at the focus of extended scientific research over the past several decades owing to the astonishing morphological diversity and attainable complexity of the resulting nanoassemblies, including spheres, cylinders, lamellae, vesicles, and many other complex, bicontinuous or even hierarchical structures. The ever-increasing sophistication in the development of synthetic chemistry methods and techniques has led to a myriad of available macromolecules with varying chemical compositions, architectures, features, and properties. This assortment of characteristics has led in turn to a plethora of intriguing self-organized polymeric nanostructures, with countless possible applications in several nanotechnological fields relevant to physics, chemistry, material science, nanomedicine, and biomaterials. The present review aims to illuminate the importance and fascinating potential of BCPs solution self-assembly by highlighting recent advances and emerging trends in the field, as well as significant application-oriented progress, through characteristic contemporary examples.  相似文献   

12.
Although oriented carbon nanotubes, oriented nanowires of metals, semiconductors and oxides have attracted wide attention, there have been few reports on oriented polymer nanostructures such as nanowires. In this paper we report the assembly of large arrays of oriented nanowires containing molecularly aligned conducting polymers (polyaniline) without using a porous membrane template to support the polymer. The uniform oriented nanowires were prepared through controlled nucleation and growth during a stepwise electrochemical deposition process in which a large number of nuclei were first deposited on the substrate using a large current density. After the initial nucleation, the current density was reduced stepwise in order to grow the oriented nanowires from the nucleation sites created in the first step. The usefulness of these new polymer structures is demonstrated with a chemical sensor device for H(2)O(2), the detection of which is widely investigated for biosensors. Finally, we demonstrated that controlled nucleation and growth is a general approach and has potential for growing oriented nanostructures of other materials.  相似文献   

13.
Over the past decade, silicon nanowire (SiNW) biosensors have been studied for the detection of biological molecules as highly sensitive, label-free, and electrical tools. Herein we present a comprehensive review about the fabrication of SiNW biosensors and their applications in disease diagnostics. We discuss the detection of important biomarkers related to diseases including cancer, cardiovascular diseases, and infectious diseases. SiNW biosensors hold great promise to realize point-of-care (POC) devices for disease diagnostics with potential for miniaturization and integration.  相似文献   

14.
The achievements in the area of enzyme stabilization based on electrolytes, polyelectrolytes and polyols is reviewed, in the context of biosensor applications. Both the storage and operational stabilities of the biosensors can be improved using these stabilizers. The deactivation of the enzymes used for the development of biosensors from thermal shock, proteolytic degradation, and non-specific metal-catalyzed oxidation can be drastically reduced with the use of one or more of these stabilizers. It is attempted to deconvolute the effect of these additives on (a) the storage stability or shelf life, and (b) the operational stabilities of the biosensors. Even though there are a large number of techniques and reports dealing with enzyme stabilization, their application to biosensor technology is still very limited. It is thus concluded that the use of the existing enzyme stabilization techniques will have a drastic effect on the storage and operational stabilities of biosensors in the near future.  相似文献   

15.
Ping Li  Wei Chen 《催化学报》2019,40(1):4-22
Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices. Up to now, various types of nanostructured materials have been studied as advanced electrocatalysts. This review highlights the application of one-dimensional (1D) metal electrocatalysts in energy conversion, focusing on two important reaction systems—direct methanol fuel cells and water splitting. In this review, we first give a broad introduction of electrochemical energy conversion. In the second section, we summarize the recent significant advances in the area of 1D metal nanostructured electrocatalysts for the electrochemical reactions involved in fuel cells and water splitting systems, including the oxygen reduction reaction, methanol oxidation reaction, hydrogen evolution reaction, and oxygen evolution reaction. Finally, based on the current studies on 1D nanostructures for energy electrocatalysis, we present a brief outlook on the research trend in 1D nanoelectrocatalysts for the two clean electrochemical energy conversion systems mentioned above.  相似文献   

16.
In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.  相似文献   

17.
In this article, we introduced a novel electrochemical biosensor for the detection of microRNA-126. The biosensor utilizes a hybridization assay combined with multi-walled carbon nanotubes and gold nanorod-decorated screen-printed carbon electrodes. For electrode preparation, gold nanorods were first immobilized onto the surface of bare and multi-walled carbon nanotube-modified screen-printed carbon electrodes, and the thiol tagged-capture probe was immobilized on the electrode surface through gold and thiol group interaction. After the immobilization, thiol tagged-capture probe hybridized with the target sequence. Under optimum conditions, we determined limit of detection (LOD) and limit of quantification (LOQ) as high as 11 nM and 36 nM, respectively.  相似文献   

18.
Structural DNA nanotechnology, an emerging technique that utilizes the nucleic acid molecule as generic polymer to programmably assemble well-defined and nano-sized architectures, holds great promise for new material synthesis and constructing functional nanodevices for different purposes. In the past three decades, rapid development of this technique has enabled the syntheses of hundreds and thousands of DNA nanostructures with various morphologies at different scales and dimensions. Among them, discrete three-dimensional (3D) DNA nanostructures not only represent the most advances in new material design, but also can serve as an excellent platform for many important applications. With precise spatial addressability and capability of arbitrary control over size, shape, and function, these nanostructures have drawn particular interests to scientists in different research fields. In this review article, we will briefly summarize the development regarding the synthesis of discrete DNA 3D nanostructures with various size, shape, geometry, and topology, including our previous work and recent progress by other groups. In detail, three methods majorly used to synthesize the DNA 3D objects will be introduced accordingly. Additionally, the principle, design rule, as well as pros and cons of each method will be highlighted. As functions of these discrete 3D nanostructures have drawn great interests to researchers, we will further discuss their cutting-edge applications in different areas, ranging from novel material synthesis, new device fabrication, and biomedical applications, etc. Lastly, challenges and outlook of these promising nanostructures will be given based on our point of view.  相似文献   

19.
Covalent organic polymers (COPs) have emerged as a promising class of materials for memory devices due to their unique electronic properties and potential for tunability. This review highlights recent advances in the field of COPs-based thin films for memory applications, with a focus on the synthesis and characterization of COP thin films, their electronic properties, and their performance as memory devices. The potential of COPs-based thin films as flexible memory devices is also discussed. Overall, the recent progress in COPs-based thin films for memory applications suggests that these materials may have a significant impact on the development of next-generation memory technologies.  相似文献   

20.
Thin films of Al doped ZnO (Al:ZnO) were deposited on two substrates (Si and glass) at room temperature and 300°C using DC magnetron sputtering. These films were bombarded with 50 keV H+ beam at several fluences. The pristine and ion beam irradiated films were analysed by X‐ray diffraction, Raman spectroscopy, scanning electron microscopy, and UV‐Vis spectroscopy. The X‐ray diffraction analysis, Hall measurements, Raman and UV‐Vis spectroscopy confirm that the structural and transport properties of Al:ZnO films do not change substantially with beam irradiation at chosen fluences. However, in comparison to film deposited at room temperature, the Al:ZnO thin film deposited at 300°C shows increased transmittance (from 70% to approximately 90%) with ion beam irradiation at highest fluence. The studies of surface morphology by scanning electron microscopy reveal that the ion irradiation yields smoothening of the films, which also increases with ion fluences. The films deposited at elevated temperature are smoother than those deposited at room temperature. In the paper, we discuss the interaction of 50 keV H+ ions with Al:ZnO films in terms of radiation stability in devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号