首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bing Feng  Li-ping Kang 《Tetrahedron》2005,61(49):11758-11763
The microbiological transformation of polyphyllin I (compound I), polyphyllin III (compound II), polyphyllin V (compound III) and polyphyllin VI (compound IV) by Curvularia lunata into their corresponding subsaponins, for example, diosgenin-3-O-α-l-arabinofuranosyl (1→4)-β-d-glucopyranoside (compound V), diosgenin-3-O-α-l-rhamnopyranosyl (1→4)-β-d-glucopyranoside (compound VI), diosgenin-3-O-β-d-glucopyranoside (compound VII) and pennogenin-3-O-β-d-glucopyranoside (compound VIII), were studied in this paper. Curvularia lunata is able to hydrolyze terminal rhamnosyls that are linked by 1→2 C- bond to sugar residues of steroidal saponins at C-3 position with high activity and regioselectivity.  相似文献   

2.
Four novel withanolide glycosides and a withanolide have been isolated from the leaves of Withania somnifera. The structures of the novel compounds were elucidated as physagulin D (1→6)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside (1), 27-O-β-d-glucopyranosyl physagulin D (2), 27-O-β-d-glucopyranosyl viscosalactone B (3), 4,16-dihydroxy-5β, 6β-epoxyphysagulin D (4), and 4-(1-hydroxy-2,2-dimethylcyclo-propanone)-2,3-dihydrowithaferin A (5) on the basis of 1D-, 2D NMR and MS spectral data. In addition, seven known withanolides withaferin A (6), 2,3-dihydrowithaferin A (7), viscosalactone B (8), 27-desoxy-24,25-dihydrowithaferin A (9), sitoindoside IX (10), physagulin D (11), and withanoside IV (12) were isolated. These withanolides were assayed to determine their ability to inhibit cycloxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes and lipid peroxidation. The withanolides tested, except compound 9, showed selective COX-2 enzyme inhibition ranging from 9 to 40% at 100 μg/ml. Compounds 4, 10 and 11 also inhibited lipid peroxidation by 40, 44 and 55%, respectively. The inhibition of COX-2 enzyme by withanolides is reported here for the first time.  相似文献   

3.
4.
5.
The two major steroidal saponins from the roots of Asparagus racemosus were isolated by RP-HPLC and their structure determined by extensive NMR studies. Their structures did not match those reported previously for shatavarins I and IV and were found to be 3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl}-26-O-(β-d-glucopyranosyl)-(25S)-5β-furostan-3β,22α,26-triol and 3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl}-(25S)-5β-spirostan-3β-ol.  相似文献   

6.
Novel fluorinated silane coupling agents with a biphenyl structure, CnF2n+1(C6H4)2CH2CH2Si(OCH3)3 (n = 4, 6, and 8), were synthesized with the aim to improve the heat-resistance, oxidation-resistance, and acid-resistance of the surface modified with a common fluorinated silane coupling agent. Alcohols, Rf(C6H4)2CH(OH)CH3, were obtained by reducing the intermediates, Rf(C6H4)2COCH3, the products of the reaction of 4-acetyl-4′-bromobiphenyl with perfluoroalkyl iodides in the presence of copper powder. The reaction of the alcohols with phosphorus tribromide gave olefins, Rf(C6H4)2CHCH2, which were then allowed to react with tetramethoxysilane in the presence of hexachloroplatinate(IV) catalyst to yield novel fluorinated silane coupling agents with a biphenyl structure. The coupling agents with four and six carbon atoms in their fluorocarbon chains were obtained as a colorless liquid while that with 8 carbon atoms was a white gel. Evaluations were made of the coupling agents using surfaces modified with them in terms of water contact angles, heat-resistance, oxidation-resistance, and acid-resistance. The agents behaved similarly to the conventional fluorinated silane coupling agents with respect to water contact angles, oxidation-resistance, and acid-resistance, whereas the former showed an extremely higher heat-resistance (up to 350 °C). In addition, C6H5C6H4CH2CH2Si(OCH3)3 and CH3(C6H4)2CH2CH2Si(OCH3)3 with no fluoroalkyl group were synthesized and the heat-resistance of glass surfaces modified with these compounds was examined.  相似文献   

7.
Selective anodic fluorination of electrophilic alkenes   总被引:1,自引:0,他引:1  
Anodic fluorination of some electrophilic alkenes (conjugated with electron-withdrawn groups), ethyl cinnamates, RC6H4CHCHCO2Et (R = H, CH3, CH3O, F and CF3), cinnamonitrile, C6H4CHCHCN, phenyl stryryl ketone, and t-butyl styryl ketone using ammonium fluorides as the fluorine source and supporting electrolyte, in CH2Cl2 as electrolytic solvent yields the expected vicinal difluoro compounds, as mixture of erythro and threo isomers. The anodic fluorination of phenyl 3,5-di-t-butyl-4-hydroxystyryl ketone yields two monofluoro compounds. A possible reaction mechanism is discussed.  相似文献   

8.
Treatment of the chloro-bridged dinuclear complex [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}(μ-Cl)]2 (1) with homobidentate [P,P], [As,As], [N,N], and heterobidentate [P,As], [P,N] ligands in a 1:1 molar ratio gave the dinuclear complexes [{Pd[3,4-(MeO)2C6H2C(H)N(Cy)-C6,N](Cl)}2{μ-L}] (L = Ph2PC4H6(NH)CH2PPh2 (2); Ph2As(CH2)2AsPh2 (3); 1,3-(NH2CH2)2C6H4 (4); Ph2P(CH2)2AsPh2 (5); Ph2P(CH2)2NH2 (6)), with the bidentate ligands bridging the two cyclometallated fragments.The reaction with the homobidentate ligands in a 1:2 molar ratio in the presence of NaClO4 afforded the mononuclear compounds [[Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,P}][ClO4] (L = Ph2PC4H6(NH)CH2PPh2 (7); (o-Tol)2P(CH2)2P(o-Tol)2 (8)), [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2As(CH2)2AsPh2-As,As}][ClO4] (9) and [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-N,N}][ClO4] (L = NH2(CH2)3NH2 (10); NH2(C6H8)CH2(C6H8)NH2 (11); 1,3-(NH2CH2)2C6H4 (12); 1,3-(NH2)2C5H3N (13); NH2(C6H4)O(C6H4)NH2 (14); NMe2(CH2)2NMe2 (15)), in which the chloro ligands are absent and the bidentate ligands are chelated to the palladium atom.Reaction of 1 with Ph2P(CH2)2AsPh2 in 1:2 molar ratio in acetone in the presence of NH4PF6 afforded the analogous mononuclear compound [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2P(CH2)2AsPh2-P,As}][PF6] (16); whereas reaction with Ph2P(CH2)3NH2 gave [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2P(CH2)3N(CMe2)-P,N}][PF6] (17), derived from intermolecular condensation between the aminophosphine and acetone. Condensation of the NH2 group was precluded by change of solvent, using dichloromethane.Iminophoshines also reacted with 1 in 1:2 molar ratio in acetone to give a new series of mononuclear cyclometallated complexes: [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,N}][ClO4] (L = Ph2PC6H4C(H)NCy (20); Ph2PC6H4C(H)NC(CH3)3 (21); Ph2PC6H4C(H)NNMe2 (22); Ph2PC6H4C(H)NNHMe (23); Ph2PC6H4C(H)NNHPh (24)). Analogous complexes with a stable P,O-chelate were obtained using bidentate [P,O] donor ligands: [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,O}][Cl] (L = 2-(Ph2P)C6H4CHO (25); Ph2PN(Me)C(O)Me (26)).The crystal structures of compounds 1, 5, 15, 16, 18, 20 have been determined by X-ray crystallography.  相似文献   

9.
10.
11.
Bioassay-guided fractionation of the ethanol extract of the roots and rhizomes of Veratrum taliense yielded two new and thirteen known steroidal alkaloids. The structures of the two new compounds, neoverataline A and B, were established by extensive spectroscopic analyses to be 3,4-secocevane-4,9-olid-14,15,16,20-tetra-ol-3-oic acid and 3,4-secocevane-4,9-olid-7,14,15,16,20-penta-ol-3-oic acid, respectively, and are a novel carbon skelton. All of the fifteen alkaloids were subjected to in vitro antifungal assays, which showed that the verazine- (veramitaline, stenophylline B, stenophylline B-3-O-β-d-glucopyranoside, veramiline-3-O-β-d-glucopyranoside) and jerveratrum-type (jervine, jervine-3-O-β-d-glucopyranoside) alkaloids exhibited strong antifungal activities against the phytopathogenic fungus Phytophthora capisis with MICs of 160, 120, 160, 80, 80 and 120 μg·L−1, respectively. Furthermore, the verazine-type alkaloids stenophylline B, stenophylline B 3-O-β-d-glucopyranoside and veramiline 3-O-β-d-glucopyranoside were shown to also inhibit the growth of another fungal phytopathogen Rhizoctonia cerealis with MICs of 160, 120 and 120 μg mL−1. The MICs of triadimefon (an antifungal agrochemical used herein as a positive control) against P. capisis and R. cerealis were 120 and 80 μg mL−1, respectively. A preliminary structure-activity relationship regarding these alkaloids has been formulated.  相似文献   

12.
13.
14.
A new phenylpropanoid and two new diterpenes were isolated from the leaves of the plant Mikania laevigata Shultz Bip. ex Baker. The structures of these compounds were established by 1D- and 2D-nuclear magnetic resonance spectroscopic techniques and mass spectrometry data. Taraxerol, lupeol, coumarin, syringaldehyde, trans-melilotoside, cis-melilotoside, adenosine, patuletin 3-O-β-d-glucopyranoside, kaempferol 3-O-β-d-glucopyranoside, quercetin 3-O-β-d-glucopyranoside, methyl 3,5-di-O-caffeoyl quinate, and 3,3′,5-trihydroxy-4′,6,7-trimethoxyflavone were isolated too. In addition, the compounds dihydrocoumarin, spathulenol, caryophyllene oxide, kaurenoic acid, beyerenoic acid, and lupeol acetate were identified by GC-MS.  相似文献   

15.
Kin-ichi Oyama 《Tetrahedron》2004,60(9):2025-2034
We have succeeded in the first total synthesis of apigenin 7,4′-di-O-β-d-glucopyranoside (1a), a component of blue pigment, protodelphin, from naringenin (2). Glycosylation of 2 according to Koenigs-Knorr reaction provided a monoglucoside 4a in 80% yield, and this was followed by DDQ oxidation to give apigenin 7-O-glucoside (12a). Further glycosylation of 4′-OH of 12a with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl fluoride (5a) was achieved using a Lewis acid-and-base promotion system (BF3·Et2O, 2,6-di-tert-butyl-4-methylpyridine, and 1,1,3,3-tetramethylguanidine) in 70% yield, and subsequent deprotection produced 1a. Synthesis of three other chiral isomers of 1a, with replacement of d-glucose at 7 and/or 4′-OH by l-glucose (1b-d), and four chiral isomers of apigenin 7-O-β-glucosides (6a,b) and 4′-O-β-glucosides (7a,b) also proved possible.  相似文献   

16.
Three new triterpenoidal glucosides, justiciosides E, F and G, were isolated from the aerial portion of Justicia betonica. Their structures were established through chemical and spectroscopic analyses, and showed an unusual A-nor-B-homo oleanan-12-ene skeleton type for the aglycone moiety as A-nor-B-homo-oleanan-10,12-diene-3β,11α,28-triol 28-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside, A-nor-B-homo-oleanan-10,12-diene-3β,11α,28-triol 28-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside, and 11α-methoxy-A-nor-B-homo-oleanan-10,12-diene-3β,11α,28-triol 28-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside, respectively.  相似文献   

17.
Polysaccharides from a crude extract of Auricularia polytricha were separated by high-speed countercurrent chromatography (HSCCC). The separation was performed with an aqueous two-phase system of PEG1000–K2HPO4–KH2PO4–H2O (0.5:1.25:1.25:7.0, w/w). The crude sample (2.0 g) was successfully separated into three polysaccharide components of AAPS-1 (192 mg), AAPS-2 (137 mg), and AAPS-3 (98 mg) with molecular weights of 162, 259, and 483 kDa, respectively. These compounds were tested for growth inhibition of transplanted S180 sarcoma in mice. AAPS-2 had an inhibition rate of 40.4%. The structure of AAPS-2 was elucidated from partial hydrolysis, periodate oxidation, acetylation, methylation analysis, and NMR spectroscopy (1H, 13C). These results showed AAPS-2 is a polysaccharide with a backbone of (1 → 3)-linked-β-d-glucopyranosyl and (1 → 3, 6)-linked-β-d-glucopyranosyl residues in a 2:1 ratio, and has one terminal (1→)-β-d-glucopyranosyl at the O-6 position of (1→3, 6)-linked-β-d-glucopyranosyl of the main chain.  相似文献   

18.
The pigment, tecophilin, in blue flowers of Tecophilaea cyanocrocus was isolated and the structure was determined to be 3-O-(6-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-7-O-(6-O-(4-O-(2-O-(4-O-β-d-glucopyranosyl-(E)-caffeoyl)-6-O-(4-O-β-d-glucopyranosyl-(E)-caffeoyl)-β-d-glucopyranosyl)-(E)-caffeoyl)-β-d-glucopyranosyl)delphinidin. The reproduction experiment of the same color as petals according to the results of chemical analysis and measurement of vacuolar pH of blue cells clarified that the blue color solely develops by tecophilin without interaction of metal ions nor co-pigments. 1H NMR analysis and CD spectrum indicate the co-existence of clockwise intermolecular self-association of the delphinidin nuclei and intramolecular π–π stacking between the chromophore and caffeoyl residues to derive bathochromic shift of the absorption spectrum and stabilize the color by preventing hydration reaction.  相似文献   

19.
Nitration of p-tert-butylcalix[n]arene methyl ethers under a variety of reaction conditions has been examined. It has been determined that amongst different nitration procedures adopted (AlCl3/KNO3, HNO3/CH3COOH, HNO3/(CH3CO)2O, cerium(IV) ammonium nitrate/CH3COOH), ipso-nitration with CH3COOH/HNO3 gives best yields of p-nitrocalixarenes and work up conditions. ipso-Nitration of tetramethoxytetra-p-tert-butylcalix[4]arene gives tetramethoxytetra-p-nitrocalix[4]arene as triclinic crystals with space group with a=9.102(3) Å, b=11.623(3) Å, c=18.368(3) Å and α=77.99(2)°, β=81.10(2)°, γ=73.37(2)°. Its conformation is partial cone and it forms an exocylic 1:1 complex with DMF.  相似文献   

20.
A matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)-based method has been developed for rapid differentiation between Panax ginseng and Panax quinquefolius, two herbal medicines with similar chemical and physical properties but different therapeutic effects. This method required only a small quantity of samples, and the herbal medicines were analyzed by MALDI-MS either after a brief extraction step, or directly on the powder form or small pieces of raw samples. The acquired MALDI-MS spectra showed different patterns of ginsenosides and small chemical molecules between P. ginseng and P. quinquefolius, thus allowing unambiguous differentiation between the two Panax species based on the specific ions, intensity ratios of characteristic ions or principal component analysis. The approach could also be used to differentiate red ginseng or P. quinquefolius adulterated with P. ginseng from pure P. ginseng and pure Panax quinquefolium. The intensity ratios of characteristic ions in the MALDI-MS spectra showed high reproducibility and enabled quantitative determination of ginsenosides in the herbal samples and percentage of P. quinquefolius in the adulterated binary mixture. The method is simple, rapid, robust, and can be extended for analysis of other herbal medicines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号