首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Some azido‐ and iminophosphorane derivatives of 3,6‐dichloro‐ and 3,4,5,6‐tetrachloropyridazine were synthesized and studied by means of NMR measurements. Based on multinuclear data (chemical shifts, coupling constants) for compounds containing the azide group, no potentially possible tetrazole–azide equilibrium can be observed, even under acidic conditions. An unusual substitution of a chlorine atom (in position 4) of tetrachloropyridazine in the reaction with hydrazine was demonstrated by NMR measurements of two newly synthesized compounds containing azido‐ and iminophosphorane groups. Using multinuclear magnetic resonance data, the sites of ethylation and protonation of azido‐ and iminophosphorane derivatives of chloropyridazines were established. In the case of the tetrazolopyridazines, ethylation occurs at the N1′ and N2′ atoms, whereas for monocyclic compounds it takes place at the N1 and/or N2 atoms of the pyridazine ring. Preferred sites of protonation are the N1′ atom of the tetrazole ring and the N1 atom of the pyridazine ring. Moreover, the structures of potassium salts of 6‐(3‐cyano‐1‐triazeno)tetrazolo[1,5‐b] pyridazine and its amido derivative were established using NMR data, especially 15N NMR chemical shifts. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
High resolution 1H NMR spectroscopy has been employed as a versatile and rapid method to analyze the polar fraction of extra virgin olive oils containing various classes of phenolic compounds. The strategy for identification of phenolic compounds is based on the NMR chemical shifts of a large number of model compounds assigned by using two-dimensional (2D) NMR spectroscopy. Furthermore, 2D NMR was applied to phenolic extracts in an attempt to discover additional phenolic compounds. The 1H NMR methodology was successful in detecting simple phenols, such as p-coumaric acid, vanillic acid, homovanillyl alcohol, vanillin, free tyrosol, and free hydroxytyrosol, the flavonols apigenin and luteolin, the lignans (+) pinoresinol, (+) 1-acetoxypinoresinol and syringaresinol, two isomers of the aldehydic form of oleuropein and ligstroside, the dialdehydic form of oleuropein and ligstroside lacking a carboxymethyl group, and finally total hydroxytyrosol and total tyrosol reflecting the total amounts of free and esterified hydroxytyrol and tyrosol, respectively. The absolute amount of each phenolic constituent was determined in the polar fraction by using anhydrous 1,3,5-triazine as an internal standard.  相似文献   

3.
Data on the NMR spectroscopy of C, N, O, Si, P, and Sn donor atoms of platinum metal complexes in solutions are surveyed. The chemical shift of a donor atom mainly depends on the ligand in the trans-position (due to the trans-effect). The chemical shift of a donor atom on a particular coordinate of the complex (coordinate shift, CSh) is an attribute of this coordinate and can be used to identify such a coordinate in platinum metal complexes and to determine the structures of complexes. Based on the known data, CSh diagrams were composed for 1H, 13C, 14N, 17O, 19F, 31P, and 119Sn. Examples of using the CShs for determining the structures of platinum metal complexes in solutions are presented.  相似文献   

4.
Assignments of13C chemical shifts and13C-1H coupling constants are presented for six bipyridine derivatives. Some earlier spectral assignments have been corrected. The spectral parameters of the bipyridines are generally very similar to those of the appropriate simple substituted pyridines. Long range interring coupling constants in these compounds have been discussed.
13C-NMR einiger Bipyridine
Zusammenfassung Es werden die Zuordnungen der13C-Verschiebungen und der13C-1H-Kopplungskonstanten für sechs Bipyridinderivate präsentiert. Dabei wurden einige früher getroffene Zuordnungen korrigiert. Das NMR-Verhalten der Bipyridine ist dem der analog substituierten Pyridine generell sehr ähnlich. Die Long-Range-Kopplungen zwischen den Ringen werden diskutiert.
  相似文献   

5.
Summary 13C chemical shift assignment of seven N-derivatives of 3-methyl-4,1-benzoxazepine-2,5-dione is reported. The assignment has been done with the help of J-modulated spectra and by comparison with the values of resembling segments reported in the reference. It has been found that the substituent on nitrogen atom has no significant effect on the13C chemical shift of the skeleton.
13C-NMR einiger Derivative des 3-Methyl-4,1-benzoxazepin-2,5-dions
Zusammenfassung Es werden die13C-NMR-Verschiebungszuordnungen von sieben N-Derivaten von 3-Methyl-4,1-benzoxazepin-2,5-dionen diskutiert. Die Zuordnungen erfolgten über J-modulierte Spektren und Vergleich von entsprechenden Literaturdaten ähnlicher Molekülsegmente. Es zeigte sich, daß die Substitution am Stickstoff keinen signifikanten Einfluß auf die13C-chemischen Verschiebungen der Skelettkohlenstoffatome hat.
  相似文献   

6.
A novel strategy for NMR analysis of mixtures of oleanolic and ursolic acids that occur in natural products is described. These important phytochemicals have similar structure and their discrimination and quantification is rather difficult. We report herein the combined use of proton-carbon heteronuclear single-quantum coherence (1H-13C HSQC) and proton-carbon heteronuclear multiple-bond correlation (1H-13C HMBC) NMR spectroscopy, in the identification and quantitation of oleanolic acid (OA) and ursolic acid (UA)in plant extracts of the Lamiaceae and Oleaceae family. The combination of 1H-13C HSQC and 1H-13C HMBC techniques allows the connection of the proton and carbon-13 spins across the molecular backbone resulting in the identification and, thus, discrimination of oleanolic and ursolic acid without resorting to physicochemical separation of the components. The quantitative results provided by 2D 1H-13C HSQC NMR data were obtained within a short period of time (∼14 min) and are in excellent agreement with those obtained by HPLC, which support the efficiency of the suggested methodology.  相似文献   

7.
A complete 1H, 19F, and 13C NMR assignment of a homologous series of polyfluorinated acids and alcohols is reported. These assignments were obtained chiefly through single and multiple‐bond 1H–13C and 19F–13C correlation experiments (HSQC, HMBC). 19F NOESY experiments were required for assignment of two compounds with diastereotopic 19F nuclei in the CF2chain of the molecule. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
1H NMR spectroscopy was applied to the quantitative determination of malic and citric acids in apple, apricot, pear, kiwi, orange, strawberry and pineapple juices. Aspartic acid was studied as a potential interference. The effect of the sample pH on the chemical shifts of signals from malic, citric and aspartic acids was examined and a value of 1.0 was selected to carry out the determination. Integration of NMR signals at 2.89-2.95 and 3.00-3.04 ppm were used for calculating the concentration of malic and citric acids, respectively. At this pH the integrated signals were not overlapped. Sodium 3-(trimethylsilyl)tetradeuteropropionate (TSP) was used as an internal reference. The obtained results applying NMR procedures to analyze the juices from different fruits were compared to those obtained using enzymatic methods and both were in close agreement. The intra- and inter-day repeatability was tested for apple juice (7.86 g l−1 malic acid, 0.32 g l−1 citric acid) and apricot juice (5.06 g l−1 malic acid, 4.79 g l−1 citric acid) obtaining coefficients of variation lower than 3.4% for intra-day measures (n = 10) and lower than 3.8% for inter-day measures (n = 20).  相似文献   

9.
Radix Codonopsis (Dangshen) is a famous traditional Chinese medicine and has long been used for replenishing energy deficiency, strengthening the immune system, lowering blood pressure and improving appetite in China, Japan and Korea. A highly specific quantification method using 1H NMR has been developed for the simultaneous determination of novel quaternary ammonium alkaloids codotubulosine A and B, adenosine and 5-(hydroxymethyl)furfural in Radix Codonopsis materials Codonopsis pilosula, C. pilosula var. modesta, C. tangshen, C. tubulosa, C. subglobosa, C. clematidea, C. lanceolota and Campanumoea javanica collected from different regions of China and Taiwan. A solid-phase extraction with C-18 cartridge followed by elution with water can easily remove sugars the major components that may affect the determination of target constituents. In the 1H NMR spectrum, the signals of N-CH3 of codotubulosine A (δ 2.75) and B (δ 2.83), H-8 of adenosine (δ 8.15), and CHO signal of 5-(hydroxymethyl)furfural (δ 9.49) are well separated from other signals in [2H4]methanol. The quantity of the compounds was calculated by the relative ratio of the integral values of the target peaks of each compound to the known amount of internal standard pyrazine. The described NMR method is found to be relatively simple, specific, precise and accurate for the quality control of Radix Codonopsis herbs and no reference compounds are required for calibration curves, in comparison to conventional HPLC methods, for instance.  相似文献   

10.
Two-dimensional triple-resonance H(Si)C NMR experiments have been applied at natural abundance to assign 13C NMR signals in silylated phenols. The method showing its great potential in determining positions of hydroxyl groups is widely applicable to signal assignment and structure elucidation of synthetic and natural phenolic compounds.  相似文献   

11.
1H and 13C NMR spectra of symmetrically substituted cyclotriphosphazenes exhibit second‐order effects. The influence of the 31P,31P coupling constants between ring phosphorus atoms on these effects was studied. Some values of this coupling constant between phosphorus bearing identical substituents were measured using 13C satellites of the 31P signals or by introduction of a chiral substituent on the third phosphorus atom. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Quantitative isotopic 13C NMR at natural abundance has been used to determine the site-by-site 13C/12C ratios in vanillin and a number of related compounds eluted from silica gel chromatography columns under similar conditions. Head-to-tail isotope fractionation is observed in all compounds at the majority of carbon positions. Furthermore, the site-specific isotope deviations show signatures characteristic of the position and functionality of the substituents present. The observed effects are more complex than would be obtained by simply summing the individual effects. Such detail is hidden when only the global 13C content is measured by mass spectrometry. In particular, carbon positions within the aromatic ring are found to show site-specific isotope fractionation between the solute and the stationary phase. These interactions, defined as non-covalent isotope effects, can be normal or inverse and vary with the substitution pattern present.  相似文献   

13.
The complete 1H, 13C and 15N NMR analyses for a series of 25 diaryl-aldimines containing phenyl, pyridyl, pyrazolone and furanyl moieties are described herein. Detailed evaluation of substituent chemical shift and coupling constant effects showed that interaction between the lone pair of the pyrazolone carbonyl group or the nitrogen of 2-substitued pyridines with the aldimine hydrogen increases the value and shifts the resonance signal for this hydrogen to high frequency, in the 1H NMR spectra. The X-ray crystal structure analysis of pyrazolone substituted aldimines evidenced the planarity of the aryl groups which are conjugated with the CN double bond. In the case of the N-(2-pyridinemethylene)-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one, two rotamers were observed in the same unit cell.  相似文献   

14.
We prepared novel ionic liquid submicron particles (ILSPs) in water by emulsifying the ionic liquid (IL) N-(2-methoxyethyl)-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr12O1TFSI), which is immiscible with water, with the nonionic surfactants Tween 20 and Span 80. The mean particle size and zeta potential of the ILSPs were about 580?nm and ?30?mV, respectively. The ILSPs were characterized using 1H and 19F nuclear magnetic resonance (NMR) spectroscopic methods. The chemical shifts of the Pyr12O1+ cation and TFSI? anion in the 1H and 19F NMR spectra of the ILSP suspension were consistent with those corresponding to pure Pyr12O1TFSI. This indicated that most of the Pyr12O1TFSI was still in the IL state in the ILSP suspension. In addition, 1H–1H nuclear Overhauser effect correlated spectroscopic measurements showed that the ILSP droplets contained Pyr12O1TFSI in the neat IL steric state even in the ILSP suspension, and Pyr12O1TFSI species localized in the droplet surfaces interacted with the hydrophobic acyl side chains of the surfactants. These NMR spectroscopic results show that the ILSPs formed an IL-in-water microemulsion in which droplets of neat Pyr12O1TFSI were surrounded by the two surfactants, that is, Tween 20 and Span 80.  相似文献   

15.
1H,13C,14N and15N NMR measurements are reported for four mesoionic 1-oxa-2, 3, 4-triazoles containing exocyclic nitrogenous groups. The NMR signal assignments are discussed and compared with those previously published for some corresponding oxatriazoles. The results obtained support the proposed cyclic mesoionic structures for the compounds studied. The questions of possible charge delocalization and valence tautomerism are addressed. Compound with N H as a exocyclic group (Fig. 1) is found to be relatively unstable, this is attributed to proton migration in the corresponding non-cyclic form of this molecule.Published in Khimiya Geterotsikiicheskikh Soedinenii, No. 9, pp. 1260–1263, September, 1995.  相似文献   

16.
The formation of inclusion complexes between the native cyclodextrins (CDs) and the urea herbicide cycluron has been investigated both in solution and in the solid state. Single-crystal X-ray structures of both the uncomplexed guest and the β-CD·cycluron complex were determined while powder X-ray diffraction was used to confirm complexation between γ-CD and cycluron in the solid state. Solution-state complexation between the herbicide and α-, β- and γ-CD was established using 1H NMR spectroscopy and isothermal titration calorimetry (ITC). From the 1H NMR spectroscopic studies 1:1 complex stoichiometry was indicated in all cases and association constant values (K) were determined as 228, 3254 and 155 for the complexes α-CD·cycluron, β-CD·cycluron and γ-CD·cycluron, respectively. Assigning a 1:1 host–guest ratio, the ITC technique produced K values of the same order as those determined using the spectroscopic method. The thermodynamic parameters ΔH, ΔS and ΔG obtained using ITC provide insights into the driving forces involved during complex formation.  相似文献   

17.
The complexation of N-phthaloyl, N-formyl, and N,N-dimethyl derivatives of S-methylcysteine methyl ester (both racemic and optically pure) with three dimeric rhodium(II) salts, acetate Rh2AcO4, trifluoroacetate Rh2TFA4, and (R)-(+)-α-methoxy-α-trifluoromethylphenylacetate Rh2Mosh4 was investigated by nuclear magnetic resonance spectroscopy (NMR) at room and lower temperatures. The complexation was carried out in situ, in CDCl3 solution using titration procedure; the results were examined by the analysis of 1H and 13C NMR chemical shift change (Δδ). The complexation of free S-methyl cysteine and hydrochloride salt of its methyl ester was performed in D2O solution. For comparison, complexation of some derivatives of leucine, phenylalanine, and proline was examined.

N-phthaloyl and N-formyl derivatives of cysteine formed 1 : 1 and 1 : 2 axial complexes with all dirhodium salts. Rhodium substrates were bonded via sulfur. In one case, the complexation of Rh2TFA4 by both sulfur and N-formyl oxygen was noted. Similar complexation of Rh2TFA4, via CHO group, was found for N-formyl derivatives of leucine, phenylalanine, and proline. For N,N-dimethyl derivative of cysteine, both N and S atoms were involved in bonding. At room temperature, in all cases, ligand exchange was fast on the NMR timescale.  相似文献   

18.
Intramolecular 13C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic 13C NMR spectrometry provides a general tool for measuring the position-specific 13C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal 13C distribution, and (ii) an approach to determining the “absolute” position-specific 13C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the 13C frequency range of the studied molecule, i.e. the chemical shift range. The “absolute value” and, therefore, the trueness of the 13C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH3 by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py–irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py–irm-MS (thus, the “true” value) while the other showed a bias, which was dependent to the range covered by the resonance frequencies of the molecule. Therefore, the former can be used directly for studying isotope affiliations, while the latter can only be used directly for comparative data, for example in authenticity studies, but can also be used to obtain the true values by applying appropriate correction factors. The present study assesses several key protocol steps required to enable the determination of position-specific 13C content by isotopic 13C NMR, irrespective of the NMR spectrometer: parameters to be adjusted, performance test using [1,2-13C2]acetic acid, generation of correction factors.  相似文献   

19.
The biochemical mechanism for the formation of the C–P–C bond sequence found in l ‐phosphinothricin, a natural product with antibiotic and herbicidal activity, remains unclear. To obtain further insight into the catalytic mechanism of PhpK, the P‐methyltransferase responsible for the formation of the second C–P bond in l ‐phosphinothricin, we utilized a combination of stable isotopes and two‐dimensional nuclear magnetic resonance spectroscopy. Exploiting the newly emerged Bruker QCI probe (Bruker Corp.), we specifically designed and ran a 13C‐31P multiple quantum 1H‐13C‐31P (HCP) experiment in 1H‐31P two‐dimensional mode directly on a PhpK‐catalyzed reaction mixture using 13CH3‐labeled methylcobalamin as the methyl group donor. This method is particularly advantageous because minimal sample purification is needed to maximize product visualization. The observed 3:1:1:3 multiplet specifically and unequivocally illustrates direct bond formation between 13CH3 and 31P. Related nuclear magnetic resonance experiments based upon these principles may be designed for the study of enzymatic and/or synthetic chemical reaction mechanisms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A representative of the new class of organophosphorus ligands, viz., o,o"-dimethylene(tri-p-cresyl) bicyclophosphite (BCP), was studied as a promoter of Rh(acac)(CO)2 in hydrogenation and hydroformylation. BCP enhances the activity and stability of the catalyst much more strongly than analogous organophosphorus ligands used previously (triphenylphosphine, triphenyl phosphite, and etriolphosphite). A reason for this behavior of BCP was studied using NMR spectroscopy, quantum-chemical calculations, and molecular simulation. The high sensitivity of the 1H NMR signals of the methylene groups of BCP toward complexation appears due to the high density of the highest occupied and lowest unoccupied MO of protons of the CH2 groups, especially those directed toward the P atom. The 1H and 31P NMR spectra indicate the formation of hydrides of two types (HRh(BCP)3 and HRh(BCP)4) directly upon the addition of BCP in amounts exceeding that corresponding to the BCP/Rh = 2 ratio to a solution of Rh((acac)(CO)2. The most probable source of the hydride ion is the BCP molecule itself, namely, the bridging CH2 groups. The molecular mechanics simulation showed that in the [Rh(BCP)3]+ complexes the aromatic rings of BCP formed two molecular cavities. These cavities can alternatively open and close, thus providing flexible screening of the catalytic site. This explains the unusual behavior of the Rh complexes with BCP in hydrogenation and hydroformylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号