首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a new nonenzymatic amperometric detection of ascorbic acid (AA) using a glassy carbon (GC) disk electrode modified with hollow gold/ruthenium (hAu–Ru) nanoshells, which exhibited decent sensing characteristics. The hAu–Ru nanoshells were prepared by the incorporation of Ru on hollow gold (hAu) nanoshells from Co nanoparticle templates, which enabled AA selectivity against glucose without aid of enzyme or membrane. The structure and electrocatalytic activities of the hAu–Ru catalysts were characterized by spectroscopic and electrochemical techniques. The hAu–Ru loaded on GC electrode (hAu–Ru/GC) showed sensitivity of 426 μA mM−1 cm−2 (normalized to the GC disk area) for the linear dynamic range of <5 μM to 2 mM AA at physiological pH. The response time and detection limit were 1.6 s and 2.2 μM, respectively. Furthermore, the hAu–Ru/GC electrode displayed remarkable selectivity for ascorbic acid over all potential biological interferents, including glucose, uric acid (UA), dopamine (DA), 4-acetamidophenol (AP), and nicotinamide adenine dinucleotide (NADH), which could be especially good for biological sensing.  相似文献   

2.
Two different glucose biosensors for the amperometric determination of glucose, based on poly(p-chlorophenylamide) (PCPA) and bilayer film of PCPA and Nafion (PCPA/Nafion), are successfully developed. These two biosensors show linear amperometric responses to glucose ranging from 2.0×10−4 to 3.5×10−2 mol l−1 and 5.0×10−4 to 7.5×10−2 mol l−1, respectively, with the same correlation coefficient of 0.9988. Effects of polymerization potential and polymerization time on the performance of enzyme sensors are studied. It is found that PCPA, as a non-conducting polymer, can largely reduce the influence of electroactive interferents. Introduction of inner Nafion membrane not only further eliminates the influence of ascorbic acid on the sensor response but also increases electrode stability.  相似文献   

3.
A novel amperometric biosensor utilizing two enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP), was developed for the cathodic detection of glucose. The glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of GOD on the surface of a HRP-modified sol-gel derived-mediated ceramic carbon electrode. Ferrocenecarboxylic acid (FCA) was used as mediator to transfer electron between enzyme and electrode. In the hetero-bilayer configuration of electrode, all enzymes were well immobilized in electrode matrices and showed favorable enzymatic activities. The amperometric detection of glucose was carried out at +0.16 V (versus saturated calomel reference electrode (SCE)) in 0.1 M phosphate buffer solution (pH 6.9) with a linear response range between 8.0×10−5 and 1.3×10−3 M glucose. The biosensor showed a good suppression of interference in the amperometric detection.  相似文献   

4.
A highly selective enzyme-free amperometric glucose sensor based on electrostatic self-assembling of 3-aminobenzene boronic acid (ABBA) onto a poly(styrene-co-acrylamide)/polystyrene sulfonic acid (PSA/PSSA) electrospun nanofibers-mat was investigated. Emerging ability of phenylboronic acid to bind with the diols of sugars has been extended for rapid response of glucose with a pH-sensitive redox mediator, hematein natural dye. ABBA was adsorbed on the PSA/PSSA nanofibers-mat/Pt-disc electrode that resulted in an ABBA/PSA/PSSA glucose active electrode. The interaction of ABBA onto the PSA/PSSA nanofibers-mat/Pt-disc electrode was characterized with Fourier transform infrared spectroscopy (FT-IR), ζ-potential, scanning electron microscopy (SEM), contact angle and cyclic voltammetry (CV) measurements. The prepared enzyme-free sensor exhibited a fast amperometric response, i.e., about 4 s and linearity ranging from 0.75 to 14 mM to glucose with a sensitivity of 0.987 μA mM−1 cm−2. Compared to other types of glucose biosensors viz. use glucose oxidase as sensing elements, present glucose sensor offers basic advantages including ease of fabrication, high affinity-selectivity to the glucose upon the electrode surface and quick response.  相似文献   

5.
In this study, an electrochemical ascorbic acid (AA) sensor was constructed based on a glassy carbon electrode modified with palladium nanoparticles supported on graphene oxide (PdNPs-GO). PdNPs with a mean diameter of 2.6 nm were homogeneously deposited on GO sheets by the redox reaction between PdCl42− and GO. Cyclic voltammetry and amperometric methods were used to evaluate the electrocatalytic activity towards the oxidation of AA in neutral media. Compared to a bare GC or a Pd electrode, the anodic peak potential of AA (0.006 V) at PdNPs-GO modified electrode was shifted negatively, and the large anodic peak potential separation (0.172 V) of AA and dopamine (DA), which could contribute to the synergistic effect of GO and PdNPs, was investigated. A further amperometric experiment proved that the proposed sensor was capable of sensitive and selective sensing of AA even in the presence of DA and uric acid. The modified electrode exhibited a rapid response to AA within 5 s and the amperometric signal showed a good linear correlation to AA concentration in a broad range from 20 μM to 2.28 mM with a correlation coefficient of R = 0.9991. Moreover, the proposed sensor was applied to the determination of AA in vitamin C tablet samples. The satisfactory results obtained indicated that the proposed sensor was promising for the development of novel electrochemical sensing for AA determination.  相似文献   

6.
A novel, stable and sensitive non-enzymatic glucose sensor was developed by potentiostatically electrodepositing metallic Cu nanoparticles on graphene sheets. The electrochemical performance of the Cu-graphene sheets electrode for detection of glucose was investigated by cyclic voltammetry and chronamperometry. The Cu-graphene sheets electrode displayed a synergistic effect of copper nanoparticles and graphene sheets towards the oxidation of glucose in alkaline solution, showing higher oxidation current and negative shift in peak potential. At detection potential of 500 mV, the Cu-graphene electrode sensor presented a wide linear range up to 4.5 mM glucose with a detection limit of 0.5 μM (signal/noise = 3). In addition, the sensor responds very quickly (<2 s) with addition of glucose. Furthermore, the Cu-graphene sheets electrode exhibits high stability and selectivity to glucose, and the poisoning by chloride ion as well as interference from the oxidation of common interfering species (ascorbic, dopamine, uric acid and carbohydrate) are effectively avoided. The Cu-graphene sheets electrode allows highly selective and sensitive, stable and fast amperometric sensing of glucose, which is promising for the development of non-enzymatic glucose sensor.  相似文献   

7.
Qu F  Shi A  Yang M  Jiang J  Shen G  Yu R 《Analytica chimica acta》2007,605(1):28-33
Prussian blue nanowire array (PBNWA) was prepared via electrochemical deposition with polycarbonate membrane template for effective modification of glassy carbon electrode. The PBNWA electrode thus obtained was demonstrated to have high-catalytic activity for the electrochemical reduction of hydrogen peroxide in neutral media. This enabled the PBNWA electrode to show rapid response to H2O2 at a low potential of −0.1 V over a wide range of concentrations from 1 × 10−7 M to 5 × 10−2 M with a high sensitivity of 183 μA mM−1 cm−2. Such a low-working potential also substantially improved the selectivity of the PBNWA electrode against most electroactive species such as ascorbic acid and uric acid in physiological media. A detection limit of 5 × 10−8 M was obtained using the PBNWA electrode for H2O2, which compared favorably with most electroanalysis procedures for H2O2. A biosensor toward glucose was then constructed with the PBNWA electrode as the basic electrode by crosslinking glucose oxidase (GOx). The glucose biosensor allowed rapid, selective and sensitive determination of glucose at −0.1 V. The amperometric response exhibited a linear correlation to glucose concentration through an expanded range from 2 × 10−6 M to 1 × 10−2 M, and the response time and detection limit were determined to be 3 s and 1 μM, respectively.  相似文献   

8.
An ascorbic acid sensor was fabricated via the drop-casting of dodecylbenzene sulphonic acid (DBSA)-doped polyaniline nanoparticles onto a screen-printed carbon-paste electrode. The modified electrode was characterised with respect to the numbers of drop cast layers, optimum potential and operating pH. The sensor was found to be optimal at neutral pH and at 0 V vs. Ag/AgCl. Under these conditions, the sensor showed good selectivity and sensitivity in that it did not respond to a range of common interferents such as dopamine, acetaminophen, uric acid and citric acid, but was capable of the detection of ascorbic acid at a sensitivity of 0.76 μA mM−1 or 10.75 μA mM−1 cm−2 across a range from 0.5 to 8 mM (r2 = 0.996, n = 6), and a limit of detection of 8.3 μM (S/N = 3). The sensor was compared to a range of other conducting polymer-based ascorbate sensors and found to be comparable or superior in terms of analytical performance.  相似文献   

9.
Li S  Zheng Y  Qin GW  Ren Y  Pei W  Zuo L 《Talanta》2011,85(3):1260-1264
In this paper, an enzyme-free amperometric electrochemical sensor was fabricated by casting Nafion-impregnated Cu2O particles onto a glassy carbon electrode. A dual dependence of peak current on sweeping rate, which can be attributed for the accumulation of reaction products, was observed on the sensor. Electrochemical analysis of the particulate Cu2O for detecting H2O2 and glucose is described, showing remarkable sensitivity in both cases. The estimated detection limits and sensitivities for H2O2 (0.0039 μM, 52.3 mA mM−1 cm−2) and glucose (47.2 μM, 0.19 mA mM−1 cm−2) suggest that the response for H2O2 detection was much higher than for glucose detection. Electron microscopy observation suggested that the hierarchical structures of Cu2O resulting from self-assembly of nanocrystals are responsible for the specific electrochemical properties.  相似文献   

10.
One of the major problems in amperometric biosensors based on detection of H2O2 produced by enzymatic reaction between oxidase enzymes and substrate is the interference of redox active compounds such as ascorbic acid (AA), dopamine (DA) and uric acid (UA). To minimize these interferences, sodium bismuthate was used for the first time as an insoluble pre‐oxidant in the flow injection (FI) amperometric glucose biosensor at a Glucose oxidase (GOx) immobilized Pt/Pd bimetallic modified pre‐anodized pencil graphite electrode (p.PGE). In this context, these interfering compounds were injected into a flow injection analysis (FIA) system using an injector which was filled with NaBiO3. Thus, these interferents were converted into their redox inactive oxidized forms before reaching the electrode in the flow cell. While glucose was not influenced by the pre‐oxidant in the injector, the huge oxidation peak currents of the interferents decreased significantly in the biosensor. FI amperometric current time curves showed that the AA, DA and UA were minimized by 96 %, 86 %, and 98 % respectively, in the presence of an equivalent concentration of interferences in a 1.0 mM glucose solution. The proposed FI amperometric glucose biosensor exhibits a wide linear range (0.01–10 mM, R2=0.9994) with a detection limit of 2.4×10?3 mM. Glucose levels in the artificial serum and two real samples were successfully determined using the fabricated FI amperometric biosensor.  相似文献   

11.
A new methyl viologen-mediated amperometric enzyme electrode sensitive to glucose has been developed using carbon film electrode substrates. Carbon film electrodes from resistors fabricated by pyrolytic deposition of carbon were modified by immobilization of glucose oxidase through cross-linking with glutaraldehyde in the presence of bovine serum albumin. The mediator, methyl viologen, was directly immobilised with the enzyme together with Nafion cation-exchange polymer. The electrochemistry of the glucose oxidase/methyl viologen modified electrode was investigated by cyclic voltammetry and by electrochemical impedance spectroscopy. The biosensor response to glucose was evaluated amperometrically; the detection limit was 20 μM, the linear range extended to 1.2 mM and the reproducibility of around 3%. When stored in phosphate buffer at 4 °C and used every day, the sensor showed good stability over more several weeks.  相似文献   

12.
A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N′-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02–0.80 mmol L−1 with detection limit of 0.01 mmol L−1. The content of glucose in the sample of honey was determined as 35.5 ± 1.0 mass % (number of the repeated measurements n = 7; standard deviation SD = 1.2%; relative standard deviation RSD = 3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days).  相似文献   

13.
Electrodeposition of Pt-Pb nanoparticles (PtPbNPs) to multi-walled carbon nanotubes (MWCNTs) resulted in a stable PtPbNP/MWCNT nanocomposite with high electrocatalytic activity to glucose oxidation in either neutral or alkaline medium. More importantly, the nanocomposite electrode with a slight modification exhibited high sensitivity, high selectivity, and low detection limit in amperometric glucose sensing at physiological neutral pH (poised at a negative potential). At +0.30 V in neutral solution, the nanocomposite electrode exhibited linearity up to 11 mM of glucose with a sensitivity of 17.8 μA cm−2 mM−1 and a detection limit of 1.8 μM (S/N = 3). Electroactive ascorbic acid (0.1 mM), uric acid (0.1 mM) and fructose (0.3 mM) invoked only 23%, 14% and 9%, respectively, of the current response obtained for 3 mM glucose. At −0.15 V in neutral solution, the electrode responded linearly to glucose up to 5 mM with a detection limit of 0.16 mM (S/N = 3) and detection sensitivity of ∼18 μA cm−2 mM−1. At this negative potential, ascorbic acid, uric acid, and fructose were not electroactive, therefore, not interfering with glucose sensing. Modification of the nanocomposite electrode with Nafion coating followed by electrodeposition of a second layer of PtPbNPs on the Nafion coated PtPbNP/MWCNT nanocomposite produced a glucose sensor (poised at −0.15 V) with a lower detection limit (7.0 μM at S/N = 3) and comparable sensitivity, selectivity and linearity compared to the PtPbNP/MWCNT nanocomposite. The Nafion coating lowered the detection limit by reducing the background noise, while the second layer of PtPbNPs restored the sensitivity to the level before Nafion coating.  相似文献   

14.
Wu B  Zhang G  Shuang S  Choi MM 《Talanta》2004,64(2):546-553
A glucose biosensor using an enzyme-immobilized eggshell membrane and oxygen electrode for glucose determination has been fabricated. Glucose oxidase was covalently immobilized on an eggshell membrane with glutaraldehyde as a cross-linking agent. The glucose biosensor was fabricated by positioning the enzyme-immobilized eggshell membrane on the surface of a dissolved oxygen sensor. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution and the decrease in the oxygen level was monitored and related to the glucose concentration. The effect of glutaraldehyde concentration, pH, phosphate buffer concentration and temperature on the response of the glucose biosensor has been studied in detail. Common matrix interferents such as ethanol, d-fructose, citric acid, sodium benzoate, sucrose and l-ascorbic acid did not give significant interference. The resulting sensor exhibited a fast response (100 s), high sensitivity (8.3409 mg L−1 oxygen depletion/mmol L−1 glucose) and good storage stability (85.2% of its initial sensitivity after 4 months). The linear response is 1.0×10−5 to 1.3×10−3 mol L−1 glucose. The glucose content in real samples such as commercial glucose injection preparations and wines was determined, and the results were comparable to the values obtained from a commercial glucose assay kit based on a spectrophotometric method.  相似文献   

15.
The construction of a colloidal gold-cysteamine-carbon paste electrode, Aucoll-Cyst-CPE, for the electrochemical determination of homocysteine is reported. The improved voltammetric behaviour of homocysteine at Aucoll-Cyst-CPE with respect to that observed at a gold disk electrode is attributed to an enhanced electron transfer kinetics as a consequence of the array distribution of gold nanoparticles immobilized onto the Cyst SAM. Cyclic voltammtery of homocysteine showed an adsorption-controlled current for scan rates between 500 and 5000 mV s−1. The hydrodynamic voltammogram constructed for homocysteine allowed the selection of a potential value of +600 mV, where the background current is negligible, for the amperometric detection of the analyte at the Aucoll-Cyst-CPE. Using a flow rate of 0.8 ml min−1, the R.S.D. value for ip after 25 repetitive injections of homocysteine was of 4.3%, and one single electrode could be used for more than 15 days without any treatment or regeneration procedure of the modified electrode surface. An HPLC method for the separation and quantification of homocysteine and related thiols, using amperometric detection at the modified electrode has been developed. A mobile phase consisting of 2:98% (v/v) acetonitrile:0.05 mol l−1 buffer solution of pH 2.0, and a detection potential of +0.80 V were selected. Separation with baseline resolution and retention times of 3.00, 3.60, 4.52, 5.71 and 7.79 min were obtained for cysteine, homocysteine, glutathion, penicillamine and N-acetyl-cysteine, respectively. Calibration graphs were constructed for all the separated compounds. Detection limits ranged between 20 nM for cysteine and 120 nM for penilcillamine, with a value for homocysteine of 30 nM. These values compare advantageously with those achieved with previously reported HPLC methods using electrochemical, UV, fluorescence and MS detection modes. The developed method was applied to the determination of cysteine and homocysteine serum samples with good results.  相似文献   

16.
Shuqing Dong  Yuzhi Fang 《Talanta》2009,80(2):809-303
In the paper, a new kind of vitamin B12 (acquo-cobalamine) chemically modified electrode was fabricated and applied in capillary zone electrophoresis coupled with amperometric detection (CZE-AD) for simultaneous determination of six antioxidants in fruits and vegetables. The catalytic electrochemical properties of the chemically modified electrode could obviously enhance oxidation peak heights responses by about five times to glutathione, ascorbic acid, vanillic acid, chlorogenic acid, salicylic acid, and caffeic acid compared with common carbon disk electrode. Furthermore, the effects of working electrode potential, pH and concentration of running buffer, separation voltage and injection time on CZE-AD were investigated. Under the optimum conditions, the six analytes could be completely separated and detected in a borate-phosphate buffer (pH 8.4) within 15 min. Their linear ranges were from 2.5 × 10−7 to 1.0 × 10−4 mol L−1 and the detection limits were as low as 10−8 mol L−1 magnitude (S/N = 3). The proposed method has been successfully employed to monitor the six analytes in practical samples with recoveries in the range 96.0-106.0% and RSDs less than 5.0%. Above results demonstrate that capillary zone electrophoresis coupled with electrochemical detection using vitamin B12 modified electrode as detector is of convenient preparation, high sensitivity, good repeatability, and could be used in the rapid determination of practical samples.  相似文献   

17.
Wang Y  Tang J  Luo X  Hu X  Yang C  Xu Q 《Talanta》2011,85(5):2522-2527
In this work, a kojic acid electrochemical sensor, based on a non-covalent molecularly imprinted polymer (MIP) modified electrode, had been fabricated in the lab-on-valve system. The sensitive layer was synthesized by cyclic voltammetry using o-phenylenediamine as the functional monomer and kojic acid as the template. The template molecules were then removed from the modified electrode surface by washing with NaOH solution. Differential pulse voltammetry method using ferricyanide as probe was applied as the analytical technique, after extraction of kojic acid on the electrode. Chemical and flow parameters associated with the extraction process were investigated. The response recorded with the imprinted sensor exhibited a response in a range of 0.01-0.2 μmol L−1 with a detection limit of 3 nmol L−1. The interference studies showed that the MIP modified electrode had excellent selectivity. Furthermore, the proposed MIP electrode exhibited good sensitivity and low sample/reagent consumption, and the sensor could be applied to the determination kojic acid in cosmetics samples.  相似文献   

18.
An amperometric glucose biosensor was successfully developed by electrochemical polymerization of p-chlorophenol (4-CP) at a Pt electrode in the presence of glucose oxidase. The amperometric response of this biosensor to hydrogen peroxide, formed as the product of enzymatic reaction, was measured at a potential of 0.6 V (vs. SCE) in phosphate buffer solution. The performances of sensors, prepared at different monomer concentrations and polymerization potentials, were investigated in detail. The biosensor prepared under optimal conditions had a linear response to glucose ranging from 2.5 × 10–4 to 1.5 × 10–2 mol L–1 with a correlation coefficient of 0.997 and a response time of less than 2 s. Substrate selectivity of the polymer-based enzyme electrode was tested for coexisting interferents such as uric acid and ascorbic acid, and no discernible response was observed. After 90 days, the response of the biosensor remained almost unchanged, indicating very good stability.  相似文献   

19.
Wen Pan 《Talanta》2007,73(4):651-655
An amperometric sensor for the detection of difenidol, a tertiary amine-containing analyte, was proposed. Ruthenium(II) tris(bipyridine)/multi-walled carbon nanotubes/Nafion composite film was suggested to modify the glassy carbon electrode. The modified electrode was shown to be an excellent amperometric sensor for the detection of difenidol hydrochloride. The linear range is from 1.0 × 10−6 to 3.3 × 10−5 M with a correlation coefficient of 0.998. The limit of detection was 5 × 10−7 M, which was obtained through experimental determination based on a signal-to-noise ratio of three. The sensor was employed to the determination of the active ingredients in the tablets containing difenidol hydrochloride.  相似文献   

20.
Takátsy A  Csóka B  Nagy L  Nagy G 《Talanta》2006,69(1):281-285
Amperometric detection combined with separation technique or with selective molecular recognition step can be very effective solving quantitative analytical tasks. When the amperometric working electrode surface needs cleaning or reactivation, pulsed amperometric technique can be the choice. Coating working electrodes with different sensitizing or protecting layer is quite common in the practice of voltammetric analysis. In these studies the behavior of coated electrodes using a simplified pulsed amperometric working program which can be named periodically interrupted amperometric (PIA) detection has been investigated. Rotating platinum, and carbon paste electrodes coated with dialysis film or porcine intestinal membrane were used in the experiments. The signal in case of electrochemical oxidation of hydrogen peroxide and ascorbic acid at convective conditions has been evaluated. The signal, obtained with conventional amperometry has been compared with signal collected with a periodically interrupted amperometric measuring program, allowing time for the diffusion to reload the diffusion layer at the electrode surface. The sensitivity and the lower limit of detection (4.5 × 10−7 M for ascorbic acid and 2 × 10−6 M for H2O2) proved superior in case of the periodically interrupted amperometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号