首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An optical sensor responding to Al(III), Mg(II), Zn(II) and Cd(II) is prepared by immobilizing quinolin-8-ol-5-sulfonate (QS) on an ion-exchange resin and attaching the resin to the end of a trifurcated fiber-optic bundle. Immobilization leads to weak fluorescence from QS and causes shifts in the fluorescence spectra of the QS/metal complexes. Detection limits for the metal ions studied are all below 1 × 10?6 M. Response to metal ion concentration is nonlinear. The shape of the response fits a model that assumes a 1:1 metal/QS chelate is formed. Forrnation constants for immobilized QS complexes calculated from the model are similar to those observed for dissolved QS. Immobilized and dissolved QS behave similarly with respect to pH and interferences.  相似文献   

2.
Alarie JP  Vo-Dinh T 《Talanta》1991,38(5):529-534
This paper describes the development of a fiber-optic cyclodextrin-based (FCD) sensor. The device uses laser excitation and fluorescence detection with beta-cyclodextrin as the reagent phase, immobilized at the tip of an optical fiber. The sensitivity of the FCD sensor is 14 times as great as that of a bare optical fiber when measurements are made with the fiber immersed in a buffer after a 10-min incubation period. The selectivity of the sensor is illustrated with pyrene as the model compound and 5,6-benzoquinoline as the interferent. An interference study with a contaminated environmental ground water sample is used to illustrate the usefulness of the FCD device.  相似文献   

3.
在本文中,我们研制了一种基于T-T碱基错配特异性键合汞离子的荧光传感器用于汞离子的检测。该传感器由两条分别标记了荧光基团(F)和淬灭基团(Q)的DNA探针组成,并且含有两对用于结合汞离子的T-T错配碱基。当汞离子存在时,两条探针之间形成T-Hg2+-T结构,作用力增强,从而拉近了荧光基团与淬灭基团之间的距离,发生能量转移,使荧光信号在一定程度上被淬灭。在优化的条件下,我们使用该传感器对汞离子进行检测,动力学响应范围为50nM到1000nM,线性相关方程为y= 5281.13 - 1650.56 lg[Hg2+] ( R2 = 0.985),检测下限为79nM。此外,我们还考察了该传感器的选择性,当用其它干扰离子(浓度都为1.0µM)代替待测离子进行实验时,没有发生明显的荧光淬灭,说明该传感器具有较高的选择性。该传感器的构建为汞离子的检测提供了一条快速、简便的新途径。  相似文献   

4.
A fiber-optic sensor based on fluorescence quenching was designed for dissolved oxygen (DO) detection. The fluorinated xerogel-based sensing film of the present sensor was prepared from 3, 3, 3-trifluoropropyltrimethoxysilane (TFP–TriMOS). Oxygen-sensitive fluorophores of tris (2, 2′- bipyridine) ruthenium (II) (Ru(bpy)32+) were immobilized in the sensing film and the emission fluorescence was quenched by dissolved oxygen. In the sensor fabrication, a two-fiber probe was employed to obtain the best fluorescence collection efficiency and the sensing film was attached to the probe end. Scanning electron microscope (SEM), UV–Vis absorption spectroscopy (UV–Vis) and fourier transform infrared spectroscopy (FTIR) measurements have been used to characterize the sensing film. The sensor sensitivity is quantified by I deoxy/I oxy, where I deoxy and I oxy represented the detected fluorescence intensities in fully deoxygenated and fully oxygenated environments, respectively. Compared with tetramethoxysilane (TMOS) and methyltriethoxysilane (MTMS)-derived sensing films, TFP–TriMOS-based sensor exhibited excellent performances in dissolved oxygen detection with short response time of 4 s, low limit of detection (LOD) of 0.04 ppm (R.S.D. = 2.5%), linear Stern–Volmer calibration plot from 0 to 40 ppm and long-term stability during the past 10 months. The reasons for the preferable performances of TFP–TriMOS-based sensing film were discussed.  相似文献   

5.
《Analytical letters》2012,45(7):1075-1084
Abstract

We report the development of a fiber-optic sensor based on the principle of the sandwich binding technique for the fluoroimmunoassay. Anti-mouse immunoglobulin G (IgG) antibody was immobilized on the membrane mounted to the edge of the fiber. The sensor was exposed to the solution containing mouse IgG and then allophycocyanin conjugated anti-mouse IgG antibody was added. The helium-neon (He-Ne) laser provides excitation of the sandwich binding antigen-antibody complex. This results in fluorescence emission at the membrane. Increase in the fluorescence intensity from sensing tip was proportional to the amount of mouse IgG in the sample. A linear relationship was obtained between the fluorescence intensity increase and the mouse IgG concentration in the range 0.3 - 9.0 μg/ml.  相似文献   

6.
Xie X  Suleiman AA  Guilbault GG 《Talanta》1991,38(10):1197-1200
A new fiber-optic biosensor for urea has been developed, based on immobilized urease coupled to a fluorescence ammonia sensor. The enzymatically generated ammonia diffuses through the membrane into a solution of the fluorescent pH indicator trisodium 8-hydroxypyrene-1,3,6-trisulfonate. The sensor has been successfully used for the determination of urea in serum samples, with results in good agreement with those reported by a local hospital. The proposed sensor is reversible and selective to urea. The ease of construction of the sensor tip offers the possibility of designing disposable tips for use in clinical applications.  相似文献   

7.
A fiber-optic biosensor for urea is described. This biosensor is based on the immobilization of urease at the sensing tip of a fluorescence-based ammonia gas-sensing fiber-optic chemical sensor. Urease is immobilized on a Teflon membrane by the well known bovine serum albumin (BSA)/glutaraldehyde cross-linking method. The indicator solution for this biosensor is composed of 0.145 M sodium chloride, 5.00 mM ammonium chloride, 9.4 μM 2′,7′-bis(carboxyethyl)-5 (and 6)-carboxyfluorescein and 0.9 μM 5 (and 6)-carboxyfluorescein. The steady-state and dynamic response properties of the sensor have been established. Results show that the urease/BSA protein layer has a significant effect on sensor response and recovery times. Also, the fluorescence-based sensor has been found to be faster than a conventional potentiometric ammonia gas-sensing electrode. In addition, the fluorescence sensor responds significantly quicker than a similar absorbance-based fiber-optic urea biosensor. The utility of the resulting urea biosensor for the determination of urea in diluted serum samples is demonstrated.  相似文献   

8.
Phanerochaete chrysosporium basidiospores immobilized onto carboxymethylcellulose were used for the removal of mercury ions from aqueous solutions. The biosorption of Hg(II) ions onto carboxymethylcellulose and both immobilized live and heat-inactivated fungal mycelia of Phanerochaete chrysosporium was studied using aqueous solutions in the concentration range 30-700 mg l−1. The biosorption of Hg(II) ions by the carboxymethylcellulose and both live and heat-inactivated immobilized preparations increased as the initial concentration of mercury ions increased in the medium. Maximum biosorption capacity for immobilized live and heat-inactivated fungal mycelia of Phanerochaete chrysosporium was found to be 83.10 and 102.15 mg Hg(II) g−1, respectively, whereas the amount of Hg(II) ions adsorbed onto the plain carboxymethylcellulose beads was 39.42 mg g−1. Biosorption equilibria were established in approximately 1 h and the correlation regression coefficients show that the adsorption process can be well defined by a Langmuir equation. Temperature changes between 15 and 45 °C did not affect the biosorption capacity. The effect of pH was also investigated and the maximum adsorption of Hg(II) ions onto the carboxymethylcellulose and both live and heat-inactivated immobilized fungal mycelia was observed at pH 6.0. The carboxymethylcellulose-fungus beads could be regenerated using 10 mM HCl, with up to 95% recovery. The biosorbents were used in three biosorption-desorption cycles and no significant loss in the biosorption capacity was observed.  相似文献   

9.
He CL  Ren FL  Zhang XB  Han ZX 《Talanta》2006,70(2):364-369
A fluorescent chemical sensor for Hg(II) using 5,10,15-tris(pentafluorophenyl)corrole (H3(tpfc)) as fluorophore is described in this paper. The response of the sensor is based on the fluorescence quenching of H3(tpfc) by coordination with Hg(II). H3(tpfc) based sensor shows a linear response towards Hg(II) in the concentration range from 1.2 × 10−7 to 1.0 × 10−4 M, with a working pH range from 5.0 to 8.0. The response time for Hg(II) concentration ≤1.0 × 10−5 M is less than 5 min. The sensor shows good selectivity for Hg(II) over alkali, and alkaline earth, and most of transition metal cations. The effect of the composition of the sensor membrane has been studied and the experimental conditions optimized. The corrole based sensor membrane can be easily regenerated just by washing with blank buffer solution after each measurement. The sensor has been used for determination of Hg(II) in water samples with satisfactory results.  相似文献   

10.
A fiber-optic evanescent wave sensor for bisphenol A (BPA) determination based on a molecularly imprinted polymer (MIP)-modified fiber column was developed. MIP film immobilized with BPA was synthesized on the fiber column, and the sensor was then constructed by inserting the optical fiber prepared into a transparent capillary. A microchannel (about 2.0 μL) formed between the fiber and the capillary acted as a flow cell. BPA can be selectively adsorbed online by the MIP film and excited to produce fluorescence by the evanescent wave produced on the fiber core surface. The conditions for BPA enrichment, elution, and fluorescence detection are discussed in detail. The analytical measurements were made at 276 nm/306 nm (λ ex/λ em), and linearity of 3?×?10?9–5?×?10?6 g mL?1 BPA, a limit of detection of 1.7?×?10?9 g mL?1 BPA (3σ), and a relative standard deviation of 2.4 % (n?=?5) were obtained. The sensor selectivity and MIP binding measurement were also evaluated. The results indicated that the selectivity and sensitivity of the proposed fiber-optic sensor could be greatly improved by using MIP as a recognition and enrichment element. Further, by modification of the sensing and detection elements on the optical fiber, the proposed sensor showed the advantages of easy fabrication and low cost. The novel sensor configuration provided a platform for monitoring other species by simply changing the light source and sensing elements. The sensor presented has been successfully applied to determine BPA released from plastic products treated at different temperatures.
Figure
EW eixcation of BPA immobilized in MIP on the fiber core surface  相似文献   

11.
Flora K  Brennan JD 《The Analyst》1999,124(10):1455-1462
The development of fiber-optic biosensors requires that a biorecognition element and a fluorescent reporter group be immobilized at or near the surface of an optical element such as a planar waveguide or optical fiber. In this study, we examined a model biorecognition element-reporter group couple consisting of human serum albumin that was site-selectively labelled at Cys 34 with iodoacetoxy-nitrobenzoxadiazole (HSA-NBD). The labelled protein was encapsulated into sol-gel derived materials that were prepared either as monoliths, as beads that were formed at the distal tip of a fused silica optical fiber, or as thin films that were dipcast along the length of a glass slide or optical fiber. For fiber-based studies, the entrapped protein was excited using a helium-cadmium laser that was launched into a single optical fiber, and emission was separated from the incident radiation using a perforated mirror beam-splitter, and detected using a monochromator-photomultiplier tube assembly. Changes in fluorescence intensity were generated by denaturant-induced conformational changes in the protein or by iodide quenching. The analytical parameters of merit for the different encapsulation formats, including minimum protein loading level, response time and limit-of-detection, were examined, as were factors such as protein accessibility, leaching and photobleaching. Overall, the results indicated that both beads and films were suitable for biosensor development. In both formats, a substantial fraction of the entrapped protein remained accessible, and the entrapped protein retained a large degree of conformational flexibility. Thin films showed the most rapid response times, and provided good detection limits for a model analyte. However, the entrapment of proteins into beads at the distal tip of fibers provided better signal-to-noise and signal-to-background ratios, and required less protein for preparation. Hence, beads appear to be the most viable method for interfacing of proteins to optical fibers.  相似文献   

12.
A novel optical chemosensor was fabricated based on 1-amino-8-naphthol-3,6-disulfonic acid sodium (H-acid) intercalated layered double hydroxide (LDH) film via the electrophoretic deposition (EPD) method. The film of H-acid/LDH with the thickness of 1 μm possesses a well c-orientation of the LDH microcrystals confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The fluorescence detection for Hg(II) in aqueous solution was performed by using the H-acid/LDH film sensor at pH 7.0, with a linear response range in 1.0 × 10−7 to 1.0 × 10−5 mol L−1 and a detection limit of 6.3 × 10−8 mol L−1. Furthermore, it exhibits excellent selectivity for Hg(II) over a large number of competitive cations including alkali, alkaline earth, heavy metal and transitional metals. The specific fluorescence response of the optical sensor is attributed to the coordination between Hg(II) and sulfonic group in the H-acid immobilized in the LDH matrix, which was verified by NMR spectroscopy and UV–vis spectra. In addition, density functional theory (DFT) calculation further confirms that the coordination occurs between one Hg2+ and two O atoms in the sulfonic group, which is responsible for the significant fluorescence quenching of the H-acid/LDH film. The results indicate that the H-acid/LDH composite film can be potentially used as a chemosensor for the detection of Hg2+ in the environmental and biomedical field.  相似文献   

13.
We have prepared a novel fiber-optic evanescent wave sensor (FEWS) for dissolved oxygen (DO) detection. The sensor fabrication was based on coating a decladded portion of an optical fiber with a microporous coating, which was prepared from 3,3,3-trifluoropropyltrimethoxysilane and n-propyltrimethoxysilane. The fluorophores were immobilized in the porous coating and excited by the evanescent wave field produced on the core surface of the optical fiber. The sensitivity of the sensor was quantified by the ratio of the fluorescence intensities in pure deoxygenated (I 0) and in pure oxygenated environments (I). Results show that the quenching response of DO is increased with the enhancement of the coating surface hydrophobicity using the presented hybrid fluorinated ORMOSILs. The calibration curve of I 0/I to [O2] is linear from 0 to 40 ppm and the detection limit is 0.05 ppm (3σ) with a short response time of 15 s for DO detection. Figure    相似文献   

14.
A simple, highly sensitive and selective carbon nanocomposite electrode has been developed for the electrochemical trace determination of mercury. This mercury nanocomposite sensor was designed by incorporation of thiolated amino acids capped AuNps into the carbon ionic liquid electrode (CILE) which provides remarkably improved sensitivity and selectivity for the electrochemical stripping assay of Hg(II). Mercury ions are expected to interact with amino acids through cooperative metal–ligand interaction to form a stable complex which provides a sensitive approach for electrochemical detection of Hg(II) in the presence of other metal ions. The detection limit was found to be 2.3 nM (S/N = 3) that is lower than the permitted value of Hg(II) reported by the Environmental Protection Agency (EPA) limit of Hg(II) for drinkable water. The proposed nanocomposite electrode exhibits good applicability for monitoring Hg(II) in tap and waste water.  相似文献   

15.
A novel microsphere-based fluorescent sensor 1 for determination of Hg(II) in food samples has been successfully synthesized and its fluorescent sensing properties were investigated in detail. Polystyrene microsphere was innovatively surface modified by a rhodamine derivative; therefore sensor 1 was a fluorescent sensor with high polymer material properties of polystyrene and the optical properties of a fluorescent probe. Sensor 1 displayed high selectivity, good anti-interference performance, and instantaneous response to Hg(II). The fluorescence intensity of sensor 1 showed a linear response to Hg(II) in the concentration range of 0?µM to 8?µM with a detection limit of 0.439?µM. The most valuable advantage was that sensor 1 was recyclable and environmentally-friendly. This proposed sensor 1 was applied to monitor the content of Hg(II) in real food samples, such as tap water, rice, and anglerfish. The recovery range of tap water was from 92.60 to 105.80%, the recovery range of rice was from 90.45 to 106.10%, and the recovery range of anglerfish was from 91.30 to 105.84%. The relative error was below 10% in spiked recovery studies, suggesting that fluorescent sensor 1 provides a simple, efficient, and promising method for determination of Hg(II) in complex matrices.  相似文献   

16.
《Analytical letters》2012,45(4):659-673
Abstract

A mercury (II) ion‐selective polyvinyl chloride (PVC) membrane sensor based on ethylenediamine bisthiophenecarboxaldehyde (EDBT) as a novel nitrogen‐ and sulfur‐containing sensing material was successfully developed. The ionophore was produced through Schiff's base formation between ethylenediamine and 2‐thiophenecarboxaldehyde. These two reagents have the advantages of low cost and simple chemical compounds. Ortho‐nitro phenyl pentyl ether (o‐NPPE) as solvent and sodium tetraphenyl borate (NaTPB) as a lipophilic salt were chosen. The sensor exhibited a good linear response of 30.0±0.4 mV per decade within the concentration range of 10?7–10?2 and a detection limit of 7.0×10?8 mol L?1 Hg(II). The sensor showed good selectivity and fast response for the mercury (II) ion with respect to some alkali, alkaline earth, transition, and heavy metal ions. The EDBT–based sensor was suitable for aqueous solutions of pH range from 2.0 to 4.5. It can be used for about 3 months without any considerable divergence in potential. The formation constant of ionophore complex with Hg(II) ion was calculated by using the segmented sandwich membrane method. The structure of both the ionophore and its Hg(II) complex were examined using infrared spectra and elemental analysis. The proposed sensor was applied for the determination of Hg(II) content in some dental amulgum alloys and as an indicator electrode for potentiometric titration of Hg(II) ion with EDTA solution, as well as with I?, OH?, and IO3 ? ions. In addition, the solubility products of the previous ions were determined by using this sensor.  相似文献   

17.
A polyurethane/silver sulfide nanocomposite film was synthesized by a biomineralization sim-ulated method. The effect of the Ag2S nanoparticles on the physical properties of the com-posite was studied by Fourier transform infrared, differential scanning calorimetry (DSC), scanning electron microscopy. The thermal stability of the composite was measured by DSC. The fluorescence emission of the nanocomposite films was found to be very sensitive to Ni(II) ions, with a small amount of Ni(II) ions making the emissions increase dramatically. The films are predicted to have the potential to be developed into excellent sensing films of Ni(II) ions in the water.  相似文献   

18.
全 -( 2 ,6-二 -O-异丁基 ) -β-环糊精 ( DOB-β-CD)对固定于增塑 PVC膜中的 meso-四 ( 4-甲氧基苯基 )卟啉( TMOPP)有明显的荧光增强效应 ,且该荧光可被溶液中的二氧化碳可逆猝灭 .本文据此研制了一种可用于测定水溶液中二氧化碳含量 ,即 [H2 CO3]浓度的荧光敏感膜 .研究了最佳膜的组成 .经过组成优化的敏感膜测定 [H2 CO3]浓度的范围为 4 .75× 1 0 - 7~ 3.9× 1 0 - 5 mol/L.该传感器响应迅速、重现性好 ,常见的离子无明显干扰 .  相似文献   

19.
A highly sensitive and stable tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) electrogenerated chemiluminescence (ECL) sensor was developed based on carbon nanotube (CNT) dispersed in mesoporous composite films of sol-gel titania and perfluorosulfonated ionomer (Nafion). Single-wall (SWCNT) and multi-wall carbon nanotubes (MWCNT) can be easily dispersed in the titania-Nafion composite solution. The hydrophobic CNT in the titania-Nafion composite films coated on a glassy carbon electrode certainly increased the amount of Ru(bpy)32+ immobilized in the ECL sensor by adsorption of Ru(bpy)32+ onto CNT surface, the electrocatalytic activity towards the oxidation of hydrophobic analytes, and the electronic conductivity of the composite films. Therefore, the present ECL sensor based on the CNT-titania-Nafion showed improved ECL sensitivity for tripropylamine (TPA) compared to the ECL sensors based on both titania-Nafion composite films without CNT and pure Nafion films. The present Ru(bpy)32+ ECL sensor based on the MWCNT-titania--Nafion composite gave a linear response (R2 = 0.999) for TPA concentration from 50 nM to 1.0 mM with a remarkable detection limit (S/N = 3) of 10 nM while the ECL sensors based on titania-Nafion composite without MWCNT, pure Nafion films, and MWCNT-Nafion composite gave a detection limit of 0.1 μM, 1 μM, and 50 nM, respectively. The present ECL sensor showed outstanding long-term stability (no signal loss for 4 months).  相似文献   

20.
MOGHIMI  Ali 《中国化学》2007,25(10):1536-1541
Silica gel-loaded (E)-N-(1-thien-2'-ylethylidene)-1,2-phenylenediamine (TEPDA) phase was synthesized based on physical adsorption approaches. The stability of a chemically modified TEPDA especially in concentrated hydrochloric acid that was then used as a recycling and preconcentration reagent allowed the further uses of silica gel-loaded immobilized TEPDA phase. The application of this silica gel-loaded phase to sorption of a series of metal ions was performed by using different controlling factors such as the pH of the metal ion solution and the equilibration shaking time by the static technique. This difference was interpreted on the basis of selectivity incorporated in these sulfur containing silica gel-loaded TEPDA phases. Hg(Ⅱ) was found to exhibit the highest affinity towards extraction by these silica gel-loaded TEPDA phases. The pronounced selectivity was also confirmed by the determined distribution coefficients (Kd) of all the metal ions, showing the highest value reported for mercury(Ⅱ) extraction by the silica gel immobilized TEPDA phase. The potential applications of the silica gel immobilized TEPDA phase to selective extraction of mercury(Ⅱ) from aqueous solution were successfully accomplished and preconcentration of low concentration of Hg(Ⅱ) (30 pg·mL^-1) from natural tap water with a preconcentration factor of 200 for Hg(Ⅱ) off-line analysis was conducted by cold vapor atomic absorption analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号