首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A coumarine–imino–C2-glucosyl conjugate (L) was synthesized and characterized. The conjugate L is found to recognize Cu2+ in aqueous HEPES buffer by exhibiting a 95% fluorescence quenching in pH range 7–10 even in the presence of several biologically and ecologically relevant metal ions. Fluorescence on–off behavior has been clearly demonstrated on the basis of the binding variability of Cu2+ to L. The binding has been elicited through the changes observed in fluorescence, absorption, ESI-MS and 1H NMR titrations. All the other thirteen metal ions studied did not show any change in the fluorescence emission. These ions do not interfere with the recognition of Cu2+ by L. The structural features of [CuL]2 complex in both the isomeric forms were established by DFT computational calculations. The utility of L has been demonstrated by showing its sensitivity toward Cu2+ on a thin layer of silica gel. The L gives sensitive fluorescence signals for Cu2+ even in blood serum and exhibits appropriate fluorescence responses in living cells.  相似文献   

2.
In this Letter we present a new probe, (E)-7-(diethylamino)-2-oxo-2H-chromene-3-carbaldehyde oxime (JB), which can detect Cu2+ ions in HEPES buffer under physiological conditions. Benesi–Hildebrand and Job plots demonstrate that the stoichiometry of the Cu2+ complex formed is 2:1. Possible interference with other analytes was examined, and the decrease of the fluorescence of JB at 510 nm when it reacts with Cu2+ was shown to be highly selective. This probe accumulates in the plasmalemma of human neuroblastoma SH-SY5Y cells. Molecular dynamics (MD) simulations revealed that JB interacts with the lipid bilayer at the level of the glycerol moieties.  相似文献   

3.
A fluorescent based receptor (4Z)-4-(4-diethylamino)-2-hydroxybenzylidene amino)-1,2dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (receptor 3) was developed for the highly selective and sensitive detection of Cu2+ and Zn2+ in semi-aqueous system. The fluorescence of receptor 3 was enhanced and quenched, respectively, with the addition of Zn2+ and Cu2+ ions over other surveyed cations. The receptor formed host-guest complexes in 1:1 stoichiometry with the detection limit of 5 nM and 15 nM for Cu2+ and Zn2+ ions, respectively. Further, we have effectively utilized the two metal ions (Cu2+ and Zn2+) as chemical inputs for the manufacture of INHIBIT type logic gate at molecular level using the fluorescence responses of receptor 3 at 450 nm.  相似文献   

4.
5.
A click generated quinoline derivative (1) has been synthesized and used as a fluorescent probe for sequential recognition of Cu2+ and pyrophosphate (PPi) in DMSO/H2O (1:1, v/v, HEPES 20 mM, pH = 7.4) solution. Probe 1 displays high selectivity to Cu2+ ions, and the in-situ prepared probe 1-Cu2+ exhibits high selectivity toward pyrophosphate (PPi) with emission recovery of probe 1. Therefore, 1-Cu2+ complex can be applied as a fluorescence turn-on probe for PPi with high selectivity and sensitivity.  相似文献   

6.
A series of substituted aniline derivatized bis(1,2,3-triazolyl-γ-propylsilatranes) 3a3f were designed in good yield from their triethoxysilane analogues via Cu(I) ‘Click Silylation’. All the silatranes 3a3f were characterized by IR, NMR (1H, 13C) and HRMS studies. All these compounds were explored for their thermal stability by thermogravimetric analysis (TGA)/differential thermal analysis (DTA)/differential scanning calorimetry (DSC) study and electronic properties by UV–vis spectroscopy and fluorescence study. The binding of silatranes 3a3f to Cu2+ ion proves them to be good chemosensor. These silatranes were subjected to time dependent hydrolysis under normal atmospheric conditions. IR spectroscopic data support hydrolytic instability of 3a, 3c and 3e.  相似文献   

7.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation.  相似文献   

8.
Two 4,5-disubstituted-1,8-naphthalimide derivatives 1 and 2 were synthesized as ratiometric fluorescent and colorimetric sensors for Cu2+, respectively. In 100% aqueous solutions of 1, the presence of Cu2+ induces a strong and increasing fluorescent emission centered at 478 nm at the expense of the fluorescent emission of 1 centered at 534 nm. Compound 2 senses Cu2+ by means of a colorimetric (primrose yellow to pink) method with a thorough quench in emission attributed to the deprotonation of the secondary amine conjugated to the naphthalimide fluorophore. 1-Cu2+ and 2-Cu2+ sense cyanide in ratiometric way via colorimetric and fluorescent changes.  相似文献   

9.
A simple fluorescent probe, which contains rhodamine and aminoquinoline moieties, was designed and prepared for selective detection of Hg2+ in acetonitrile. RbQ exhibited high selectivity and sensitivity toward Hg2+ over other common metal ions. The recognition of RbQ toward Hg2+ can be detected by fluorescence spectra, absorption spectra, and even by naked eyes. The binding ratio of the RbQ–Hg2+ complex was found to be 1:1 according to Job plot experiment, and the limit of detection was 1.05×10−7 M. Moreover, the prepared complex RbQ–Zn2+ (RbQZ) could detect Hg2+ in a ratiometric way and showed lower limit of detection (2.95×10−8 M) than RbQ in the same condition. Finally, we also demonstrated that the aminoquinoline–zinc complex could be served as a new and effective FRET donor for rhodamine derivatives.  相似文献   

10.
The alkyl chain-linked diimidazolium (or dibenzimidazolium) salts, 1,1′-diethyl-4,4′-tetramethylene-diimidazolium-diiodide (L1H2·I2) and 1,1′-diethyl-3,3′-trimethylene-dibenzimidazolium-diiodide (L2H2·I2), and their silver(I) and copper(II) coordination polymers, [L1AgI]n (1) and [L2Cu2I4]n (2), have been prepared and characterized. Complex 1 is a 1D helical polymer generated by bidentated carbene ligands (L1) and Ag(I) atoms. The 1D polymer of 2 is formed by bidentated carbene ligands (L2) and coplanar quadrilateral Cu2I2 units. 3D supramolecular frameworks in the crystal packings of 1 and 2 are formed via intermolecular weak interactions, including C–H···π contacts, ππ interactions and C–H···I hydrogen bonds.  相似文献   

11.
Chiral and racemic Salen-type Schiff-base ligands (H2L1, H2L2 and H2L3), condensed between D-(+)- and D,L-camphoric diamine (also known as (1R,3S)-1,2,2-trimethylcyclopentane-1,3-diamine) and 2-hydroxybenzaldehyde or 3,5-dibromo-2-hydroxybenzaldehyde with a 1:2 molar ratio, have been synthesized and characterized. A series of new nickel(II), palladium(II) and copper(II) complexes of these chiral and racemic ligands exhibiting different coordination number (4, 5 and 6) have been characterized with the formulae [NiL1]·CH3OH (3), [NiL1]·H2O (4), [NiL2] (5), [PdL2] (6), [Cu2(L2)2(H2O)] (7) and [NiL3(DMF)(H2O)] (8). Different solvent molecules in 3 and 4 (methanol and water molecules) as well as different apical ligands in 7 and 8 (water and DMF molecules) are involved in different O–H···O hydrogen bonding interactions to further stabilize the structures. UV–Vis (UV–Vis), circular dichroism (CD) spectra and thermogravimetric (TG) analyses for the metal complexes have also been carried out.  相似文献   

12.
A series of novel fluorene derivatives containing –PO(OH)2 (1, 2), –HS (3), and –N+ (CH3)3 (4) were synthesized and only phosphonic-functionalized fluorene derivatives can detect Fe3+ with high selectivity over other metal ions. The fluorescence quenching of 1 and 2 with titration Fe3+ in water–DMF solution fits the Perrin model of static quenching. Spectral analysis showed that Fe3+ bound with fluorene-based chemosensor through the O-atoms at the phosphonic group to form nonfluorescent complexes. The binding ratio was estimated by the Job plot and the trace levels of iron in samples were successfully monitored.  相似文献   

13.
The compound 2-[1,4,7,10-tetraazacyclododecan-1-yl]-ethanethiol (L2) has been synthesized and characterized by multinuclear NMR spectroscopy and mass spectrometry. Its thiol-protected precursor L1 has also been isolated and characterized, including by X-ray structural analysis. The protonation constants of L2 were determined by potentiometric methods at 25.0 °C and 0.10 mol dm−3 KNO3 ionic strength. 13C NMR studies and 2D NMR spectra recorded at different pD values have been used to analyse its protonation scheme. Stability constants of L2 with Cu2+, Zn2+ and Cd2+ were also determined by potentiometry, and the Zn(II) and Cu(II) complexes were studied in solution by NMR, UV–Vis, and EPR spectroscopies. The pM values (pH 7.4) calculated for the metal complexes of L2 are higher than the corresponding values found for cyclen and cyclam, but the selectivity of L2 for Cu2+ is low.  相似文献   

14.
The synthesis and characterization of new symmetrical FeII complexes, [FeLA(NCS)2] (1), and [FeLBx(NCS)2] (24), are reported (LA is the tetradentate Schiff base N,N′-bis(1-pyridin-2-ylethylidene)-2,2-dimethylpropane-1,3-diamine, and LBx stands for the family of tetradentate Schiff bases N,N′-bis[(2-R-1H-imidazol-4-yl)methylene]-2,2-dimethylpropane-1,3-diamine, with: R = H for LB1 in 2, R = Me for LB2 in 3, and R = Ph for LB3 in 4). Single-crystal X-ray structures have been determined for 1 (low-spin state at 293 K), 2 (high-spin (HS) state at 200 K), and 3 (HS state at 180 K). These complexes remain in the same spin-state over the whole temperature range [80–400 K]. The dissymmetrical tetradentate Schiff base ligands LCx, N-[(2-R2-1H-imidazol-4-yl)methylene]-N′-(1-pyridin-2-ylethylidene)-2,2-R1-propane-1,3-diamine (R1 = H, Me; R2 = H, Me, Ph), containing both pyridine and imidazole rings were obtained as their [FeLCx(NCS)2] complexes, 510, through reaction of the isolated aminal type ligands 2-methyl-2-pyridin-2-ylhexahydropyrimidine (R1 = H, 57) or 2,5,5-trimethyl-2-pyridin-2-ylhexahydropyrimidine (R1 = Me, 810) with imidazole-4-carboxaldehyde (R2 = H: 5, 8), 2-methylimidazole-4-carboxaldehyde (R2 = Me: 6, 9), and 2-phenyl-imidazole-4-carboxaldehyde (R2 = Ph: 7, 10) in the presence of iron(II) thiocyanate. Together with the single-crystal X-ray structures of 7 and 9, variable-temperature magnetic susceptibility and Mössbauer studies of 510 showed that it is possible to tune the spin crossover properties in the [FeLCx(NCS)2] series by changing the 2-imidazole and/or C2-propylene susbtituent of LCx.  相似文献   

15.
A new tetraphenylethylene (TPE)-based sensor M1 bearing double 2-methylpyridyl-2-methylthiophenylamino units linked with triazole moieties was reported. Both UV–vis and fluorescence spectroscopic studies demonstrated that M1 was highly sensitive and selective toward Fe3+ over other metal ions in THF/H2O solution based on the aggregation-induced emission quenching mechanism. The lowest detection limit of M1 for Fe3+ is 0.7 μM. The detailed fluorescent titration study suggested that the binding stoichiometry of the M1–Fe3+ complex was 1:2, and the structure between M1 and the Fe3+ complex was confirmed by the 1H NMR titration.  相似文献   

16.
Prabhpreet Singh 《Tetrahedron》2006,62(26):6379-6387
The dipod 1,2-bis(8-hydroxyquinolinoxymethyl)benzene (3) and tetrapod 1,2,4,5-tetrakis(8-hydroxyquinolinoxymethyl)benzene (5) have been synthesized through nucleophilic substitution of respective 1,2-bis(bromomethyl)benzene (2) and 1,2,4,5-tetra(bromomethyl)benzene (4) with 8-hydroxyquinoline (1). For comparison, 1,3,5-tris(8-hydroxyquinolinoxymethyl)benzene derivatives (7a and 7b) have been obtained. The complexation behavior of these podands towards Ag+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ metal ions has been investigated in acetonitrile by fluorescence spectroscopy. The sterically crowded 1,2,4,5-tetrapod 5 displays unique fluorescence ‘ON-OFF-ON’ switching through fluorescence quenching (λmax 395 nm, switch OFF) with <1.0 equiv of Ag+ and fluorescence enhancement (λmax 495 nm, switch ON) with >3 equiv Ag+ and can be used for estimation of two different concentrations of Ag+ at two different wavelengths. The addition of Cu2+, Ni2+, and Co2+ metal ions to tetrapod 5 causes fluorescence quenching, i.e., ‘ON-OFF’ phenomena at λmax 395 nm for <10 μM (1 equiv) of these ions but addition of Zn2+ and Cd2+ to tetrapod 5 results in fluorescence enhancement with a gradual shift of λem from 395 to 432 and 418 nm, respectively. Similarly, dipod 3 behaves as an ‘ON-OFF-ON’ switch with Ag+, an ‘ON-OFF’ switch with Cu2+, and an ‘OFF-ON’ switch with Zn2+. The placement of quinolinoxymethyl groups at the 1,3,5-positions of benzene ring in tripod 7a-b leads to simultaneous fluorescence quenching at λmax 380 nm and enhancement at λmax 490 nm with both Ag+ and Cu2+. This behavior is in parallel with 8-methoxyquinoline 8. The rationalization of these results in terms of metal ion coordination and protonation of podands shows that 1,2 placement of quinoline units in tetrapod 5 and dipod 3 causes three different fluorescent responses, i.e., ‘ON-OFF-ON’, ‘ON-OFF’, and ‘OFF-ON’ due to metal ion coordination of different transition metal ions and 1, 3, and 5 placement of three quinolines in tripod 7, the protonation of quinolines is preferred over metal ion coordination. In general, the greater number of quinoline units coordinated per metal ion in 5 compared with the other podands points to organization of the four quinoline moieties around metal ions in the case of 5.  相似文献   

17.
The preparation, characterization, and mesomorphic properties of two series of tridentate N-salicylidene-2-hydroxyanilines and their metal complexes were described. The crystal and molecular structure of bis[2-hydroxy-4-propyloxy-N-(2-hydroxy-3,4-dipropyloxybenzylidene) aniline]copper(II) were determined by means of X-ray analysis. It crystallizes in the monoclinic space group P2(1)/n and a Z=4. The geometry at Cu2+ ions is square pyramidal with a THF solvent molecule coordinated. The core structure was nearly flat, and the intramolecular Cu–Cu atoms were separated by ca. 3.0163(6) Å. All compounds 2a formed smectic C phases, and copper complexes 1aCu were not mesogenic. In contrast, compound 2e and complexes 1bCu, 1dCu, 1eCu, and 1ePd exhibited columnar phases. The lack of mesomorphism in 1eZn was attributed to a preferred tetrahedral over square planar geometry. A Ncell equal to 2.44–2.92, calculated from powder XRD data within a 9.0 Å thick indicated that an induced structure correlated by two catenar-shaped molecules was formed in Colh phases.  相似文献   

18.
The dimeric starting material [Ru(η6-p-cymene)(μ-Cl)Cl]2 reacts with the phosphino-amides o-Ph2P–C6H4CO–NH–R [R = iPr (a), Ph (b), 4-MeC6H4 (c), 4-FC6H4 (d)] to give the mononuclear compounds 1ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–NH–R)]Cl. The subsequent reaction of these complexes with KPF6 produced the cationic species 2ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–NH–R)][PF6] in which phosphino-amides also act as rigid P,O-chelating ligands. The molecular structures of 2bd were determined crystallographically. Amide deprotonation is achieved when complexes 2ad were made react with 1 M aqueous solution of KOH, affording the corresponding neutral species 3ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–N–R)] in which a P,N-coordination mode is suggested.  相似文献   

19.
The syntheses, characterization and metal ion complexation and extraction capabilities of six new calix[4]arene Schiff base compounds, 510, are reported. The preparation of the compounds was achieved by the condensation of 5,17-diamino-11,23-di-tert-butyl-25,27-di-n-butoxy-26,28-dihydroxycalix[4]arene with the appropriate aldehyde (5-bromosalicylaldehyde for 5, 4-anisaldehyde for 6, 4-(dimethylamino)benzaldehyde for 7, 9-anthracenecarboxaldehyde for 8, 1-pyrenecarboxaldehyde for 9, and 9-fluorenecarboxaldehyde for 10) in refluxing ethanol. The compounds were characterized by 1H and 13C NMR spectroscopy, IR spectroscopy, high-resolution mass spectrometry and elemental analysis. The X-ray crystal structures of 7, 8 and 9 (as dichloromethane solvates) revealed that the calixarene molecules adopt H-bond stabilized, distorted-cone conformations and form centrosymmetric dimers in the solid state. Compounds 510 did not form host–guest complexes with NEt4[(bdt)MoO2(OSiPh3)] (bdt2–=benzene-1,2-dithiolate), a potential precursor for biologically relevant oxosulfido-Mo(VI/V) enzyme models; such host–guest complexes have the potential to stabilize these sought-after but highly reactive model compounds. In addition, the capabilities of 510 to extract selected metal ions (Ni2+, Co2+, Cu2+, Zn2+, Ag+, Pb2+, Cd2+ and Hg2+) from an aqueous into an organic phase have been assessed by picrate extraction experiments. Compound 5 displayed exceptional selectivity towards Ni2+, compound 7 exhibited enhanced extraction towards all of the metal ions tested and compounds 6, 9 and 10 showed very high selectivity towards Hg2+. On the other hand, compound 8 exhibited negligible capacity to extract any of the metal ions tested.  相似文献   

20.
A series of mixed halide–dicyanamide and halide complexes of cadmium(II) mediated by 2-aminoalkyl-pyridine ligands [2-aminomethylpyridine (ampy) and 2-aminoethylpyridine (aepy)] have been synthesized. Five of them, [CdCl(dca)(aepy)]n (1), [CdBr(dca)(ampy)]n (2), [CdCl(dca)(ampy)]n (3) (dca = dicyanamide); [CdI2(aepy)]n (4), and [CdI2(ampy)]n (5), (dca = dicyanamide) have been characterized by X-ray single crystal structure analysis. The structural determination shows that the compounds are 1D coordination polymers, with the exception of 3 that gives origin to a 2D sheet-like network. The ampy and aepy ligands (also with the occurrence of dca anions in 13) reveal to be useful ancillary fragments for the construction of unprecedented Cd–halide polymeric species. The crystal packing shows that the dimensionality of all compounds is enlarged to 2D, and 3D in the case of complex 3, through π–π interactions occurring between the pyridine rings. All the species exhibit interesting luminescence property in solution as well in solid state which is originated from ligand-centered π–π transitions. The fluorescence band maxima and fluorescence efficiency (in methanol) are found to be dependent not only on the pyridine ligand but also on the type of halide, and the co-ligand. Solid state luminescent study implies that π–π interactions occurring between pyridine rings are also important in controlling the fluorescence intensity. Amongst the synthesized complexes reported, complex 5 exhibits the highest fluorescence efficiency in methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号