首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shen Z  Li H  Feng L 《The Analyst》2011,136(23):5025-5029
A ratiometric indicator-displacement assay (RIDA) array has been developed for the semi-quantitative colorimetric determination of chloride, bromide, and iodide anions. Determinations of these halide anions follow the displacement reaction using the chelate compound of (2-(3,5-dibromo-2-pyridylazo)-5-(diethylamino)phenol) (3,5-Br2-PADAP) and heavy metal salts as colorimetric reagent. Different from regular silver nitrate titrations, the chloride, bromide, and iodide anions compete with the 3,5-Br2-PADAP ligand and change the colour of the 3,5-Br2-PADAP-metal chelate compound dramatically. These clearer colour changes make the semi-quantitative colorimetric determination of chloride, bromide, and iodide anions possible. The colour changes are imaged using a conventional flatbed scanner, and digitized. After statistical analysis, these colour changes in the RIDA array provide facile identification of chloride, bromide, and iodide anions at a wide concentration range (10 μM to 10 mM) without any misclassification. The RIDA array is able to discriminate without misclassifications among seven concentrations of chloride, bromide, and iodide anions. No shelf life issue exists because the chelating compounds react with halide anions directly without any pre-immobilizations.  相似文献   

2.
A simple, inexpensive yet highly selective colorimetric indicator-displacement assay array for the simultaneous detection and identification of three important biothiols at micromolar concentrations under physiological conditions and in real samples has been developed in this work. With use of an array composed of metal indicators and metal ions, clear differentiation among cysteine, homocysteine and glutathione was achieved. On the basis of the colour change of the array, quantification of each analyte was accomplished easily, and different biothiols were identified readily using standard chemometric approaches (hierarchical clustering analysis). Moreover, the colorimetric sensor array was not responsive to changes with 19 other natural amino acids, and it showed excellent reproducibility. Importantly, the sensor array developed was successfully applied to the determination and identification of the three biothiols in a real biological sample.
Figure
A simple, inexpensive yet highly selective colorimetric indicator-displacement assay array for the simultaneous detection and identification of three important biothiols was developed in this work  相似文献   

3.
Today, traditional systems of medicines (such as herbal distillates) become important resources for providing healthcare benefits. The ability to discriminate among closely similar herbal products is critical to ensure their efficacy. This article proposes a pattern-based recognition approach for the rapid discrimination of herbal distillates using a low-cost and sensitive colorimetric sensor array composed of 25 indicators. The color changes of the sensor exposed to the vapor of the herbal distillates can be monitored easily with an ordinary flatbed scanner. The digital representation of the array response was analyzed with hierarchical clustering analysis (HCA) and principal component analysis (PCA). Using new variable selection strategy, 6 indicators among the 25 employed indicators were selected as discriminant elements of the array. So, a complete discrimination (with 100% accuracy) of 46 herbal distillates was achieved. The proposed sensor represented a better resolution when analytes were placed in an oven at 85 °C for 45 min. This colorimetric sensor array demonstrates excellent potential for quality assurance/control applications of herbal distillates.  相似文献   

4.
Feng L  Zhang Y  Wen L  Chen L  Shen Z  Guan Y 《The Analyst》2011,136(20):4197-4203
A colorimetric filtration method has been developed for the highly selective and sensitive determination of Ni(2+) and Pb(2+) ions. Determinations of Ni(2+) and Pb(2+) follow the filtration using nioxime (1,2-cyclohexanedione dioxime) and rhodizonic acid disodium salt, respectively, as colorimetric reagents. Different from regular instrumentation techniques, the metal chelate precipitations are continuously pumped into a home-made flow cell at a constant flow rate, and filtered by a cellulose acetate/nitrate membrane. The color changes of the membrane are imaged using a conventional flatbed scanner, and digitized. The special selection of individual channels in the red, green, and blue channels of the images filters the influences of coexisting ions and provides a highly selective detection of Ni(2+) and Pb(2+) cations. The linear relationship between the colorimetric response of the chosen channel and Ni(2+) or Pb(2+) concentrations indicates a quantitative detection. The detection limit for Pb(2+) is 3 μM (almost half of the Chinese wastewater discharge standard concentration), and is well below the nM level (94 nM) for Ni(2+) (a quarter of the WHO drinking water safe-exposure standard for Ni(2+)). The determinations take five to ten minutes. No shelf life issue exists because the chelating indicators react with metal directly without any pre-immobilizations.  相似文献   

5.
Muhammad Amin 《Talanta》2007,71(4):1470-1475
A convenient ion chromatography method has been proposed for the routine and simple determination of anions (Cl, SO42− and NO3) and/or cations (Na+, NH4+, K+, Mg2+ and Ca2+) using a single pump, a single eluent and a single detector. The present system used cation-exchange and anion-exchange columns connected in series via two 6-port switching valves or a single 10-port valve. The connection order of the ion-exchange columns could be varied by switching the valve(s). The present system therefore allowed the separation of either cations or anions in a single chromatographic run. While one ion-exchange column is being operated, the other ion-exchange column is being conditioned, i.e., the columns are always ready for analysis at any time. When 2.4 mM 5-sulfosalicylic acid was used as the eluent, the three anions and the five cations could be separated on the anion-exchange column and cation-exchange column, respectively. In order to obtain the separations of the target ions, the injection valve was placed between the two columns. Complete separations of the above anions or cations were demonstrated within 10 min each. The detection limits at S/N = 3 were 19-50 ppb (μg/l) for cations and 10-14 ppb for anions. The relative standard deviations of the analyte ions were less than 1.1, 2.9 and 2.8% for retention time, peak area and peak height, respectively. This proposed technique was applied to the determination of common anions and cations in river water samples.  相似文献   

6.
A new approach for simultaneous separation of small inorganic and organic anions and metal cations by capillary electrophoresis is demonstrated. Metal cations in the sample are transformed into their chelates with EDTA and are separated together with the anions using an anionic separation mode. Simultaneous separation of 19 common anions and cations was achieved in about 6 min with the electrolyte containing 5 mM K2CrO4, 3 mM boric acid, 35 microM cetyltrimethylammonium bromide and 12 microM EDTA at pH 8. Limits of detection (s/n = 3) were in the range from 4 ppb for Cl- up to 1250 ppb for Cu-EDTA and RSDs of peak areas ranged from 1.4% for Cl- up to 8.5% for Mn-EDTA chelate. The practical applicability of the method was demonstrated on the analysis of anions and cations in various water samples.  相似文献   

7.
George Z. Tsogas 《Talanta》2010,80(5):2049-169
In this work, a rapid assay of water hardness is presented based on the formation of a coacervate phase made up of multilamellar vesicles and close bilayers produced upon the reaction of alkaline earth metals with a carboxylate anionic surfactant in the presence of a co-surfactant (methanol). The procedure exploits the light scattering abilities of the coacervate phase which can be logarithmically linked to total hardness as CaCO3 equivalents via spectrophotometric detection at 350 nm. The method, abbreviated as HALC, stemming from hardness by alkaline earth metal coacervation, is straightforwardly applicable overcoming the requirement for regulation of the experimental parameters involved in the determination procedure. In total, 28 water samples with various matrix compositions and hardness contents were analyzed with satisfactory accuracy as evidenced by comparison of the results with EDTA complexometric titration. The method is free from interferences from environmentally significant metal cations and inorganic anions affording detection limits as low as 13.5 mg L−1 CaCO3 with the aid of a correction factor, which is determined by the non-linear absorbance properties of the solution mixture, and satisfactory reproducibility (RSD = 4.21-8.08%).  相似文献   

8.
In this contribution, we demonstrated a novel colorimetric method for highly sensitive and accurate detection of iodide using citrate-stabilized silver triangular nanoplates (silver TNPs). Very lower concentration of iodide can induce an appreciable color change of silver TNPs solution from blue to yellow by fusing of silver TNPs to nanoparticles, as confirmed by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). The principle of this colorimetric assay is not an ordinary colorimetry, but a new colorimetric strategy by finding the critical color in a color change process. With this strategy, 0.1 μM of iodide can be recognized within 30 min by naked-eyes observation, and lower concentration of iodide down to 8.8 nM can be detected using a spectrophotometer. Furthermore, this high sensitive colorimetric assay has good accuracy, stability and reproducibility comparing with other ordinary colorimetry. We believe this new colorimetric method will open up a fresh insight of simple, rapid and reliable detection of iodide and can find its future application in the biochemical analysis or clinical diagnosis.  相似文献   

9.
A novel colorimetric and fluorescent chemosensor 2, made up of two pyrene units connected by a 2-aza-1,3-butadiene ionophore, was designed and prepared for the selective detection of Cu2+ and Hg2+ in the presence of other metal cations. This molecular sensor exhibits substantial colour changes and fluorescence enhancement upon complexation with these metal cations in acetonitrile solutions, with detection limits in the order of 10−6 M. Job's plots revealed a 1:1 stoichiometry rationalized by theoretical DFT calculations.  相似文献   

10.
Mori M  Itabashi H  Ikedo M  Tanaka K 《Talanta》2006,70(1):174-177
An ion-exclusion chromatographic method for the direct UV detection of non-absorbing inorganic cations such as sodium (Na+), ammonium (NH4+) and hydrazine (N2H5+) ions was developed by connecting an anion-exchange column in the I-form after the separation column. For example, NH4+ is converted to a UV-absorbing molecule, NH4I, by the anion-exchange column in the I-form after the ion-exclusion separation on anion-exchange column in the OH-form with water eluent. As a result, the direct UV detection of Na+, NH4+ and N2H5+ could be successfully obtained as well as the well-resolved separation. The calibration graphs of the analyte cations detected with UV at 230 nm were linear in the range of 0.001-5.0 mM. The detection limits at S/N = 3 of the cations were below 0.1 μM. This method was applied to real water analysis, the determination of NH4+ in river and rain waters, or that of N2H5+ in boiler water, with the satisfactory results. This could be applied also to low- or non-absorbing anions such as fluoride or hydrogencarbonate ions by the combination of a weakly acidic cation-exchange resin in the H+-form as the separation column and the anion-exchange conversion column.  相似文献   

11.
A novel reaction-based probe for the dual signaling of hydrogen sulfide (H2S) was investigated. The selective H2S-induced cleavage of the ether linkage of the 7-nitro-2,1,3-benzoxadiazole (NBD) and 7-hydroxycoumarin conjugate resulted in a dual signaling behavior. The colorimetric and fluorogenic signaling behaviors were attributed to the H2S-induced generation of 7-nitrobenzo-2,1,3-oxadiazole-4-thiol (NBD-SH) and 7-hydroxycoumarin, respectively. The signaling behavior was analyzed by ratiometry. The selective signaling of H2S over other common metal ions and anions was possible with a detection limit of 1.6 × 10−6 M in an aqueous DMSO solution.  相似文献   

12.
Highly selective label free colorimetric sensor based on AgNPs stabilized by phenolic chelating ligand, N,N′-bis(2-hydroxybenzyl)-1,2-diaminobenzene (1), for NO2 anions has been developed. Addition of NO2 showed selective decolourisation of brownish yellow colour of 1-AgNPs with the detection limit of 10−7 M. Absorption studies showed the complete disappearance of 1-AgNPs peak at 426 nm due to the conversion of AgNPs to silver ions. The presence silver ions were confirmed by white precipitates of AgCl formation with NaCl. The interference studies confirmed the high selectivity of NO2 sensing in presence of anions as well as cations by 1-AgNPs. A linear relationship was observed between the change of absorption and concentration of NO2. The present approach could be performed at room temperature and ambient conditions. The practical applications of 1-AgNPs for selective sensing of NO2 in different water samples such as ground, river, pond and tap water have also been demonstrated.  相似文献   

13.
Developments of sensitive, rapid, and cheap systems for identification of a wide range of biomolecules have been recognized as a critical need in the biology field. Here, we introduce a simple colorimetric sensor array for detection of biological thiols, based on aggregation of three types of surface engineered gold nanoparticles (AuNPs). The low-molecular-weight biological thiols show high affinity to the surface of AuNPs; this causes replacement of AuNPs’ shells with thiol containing target molecules leading to the aggregation of the AuNPs through intermolecular electrostatic interaction or hydrogen-bonding. As a result of the predetermined aggregation, color and UV–vis spectra of AuNPs are changed. We employed the digital mapping approach to analyze the spectral variations with statistical and chemometric methods, including hierarchical cluster analysis (HCA) and principal component analysis (PCA). The proposed array could successfully differentiate biological molecules (e.g., cysteine, glutathione and glutathione disulfide) from other potential interferences such as amino acids in the concentration range of 10–800 μmol L−1.  相似文献   

14.
Two new cadmium(II) complexes of the empirical formulae [Cd(SMDTC)3] · 2NO3 (1) and [Cd(SBDTC)2] · 2NO3 (2) have been synthesized and characterized by elemental analyses, UV–Vis, IR, 1H NMR and TGA techniques. In complex 1, the six coordination sites around cadmium are occupied by three neutral SMDTC molecules with N and S donor atoms from each ligand molecule, whereas in complex 2 the cadmium center is four coordinated with two relatively larger SBDTC ligands chelating with N and S donor atoms in the neutral thione form. In the solid state, thermal gravimetric analysis shows that both complexes are relatively volatile in nature and undergo facile thermal decomposition above 120 °C to form the metal sulfide followed by stepwise loss of ligand molecules. The crystal and molecular structure of complex 1 has been established by the X-ray diffraction method. The central cadmium(II) atom has an octahedral geometry with three five-membered chelate rings formed by SMDTC ligands. The crystal structure consists of parallel layers of cations and anions. The SMDTC molecules in cations are arranged with their N donor groups directed towards the anion layer in an alternating fashion and form hydrogen bonds with the O atoms of the anion.  相似文献   

15.
Calix-chromophore, bis(indolyl)calix[4]crown-6 (1) in an oxidized form showing selective colorimetric changes for both alkaline earth cations and F in CH3CN, has been newly synthesized. It is observed that the binding ability of 1 for the Ca2+ binding enhances in the presence of F. Compound 1 can operate three independent combinational NOR logic gates toward metal cations and anions.  相似文献   

16.
Páscoa RN  Tóth IV  Rangel AO 《Talanta》2011,84(5):1267-1272
This work exploits a multi-syringe injection analysis (MSFIA) system coupled with a long liquid waveguide capillary cell for the spectrophotometric determination of zinc and copper in waters. A liquid waveguide capillary cell (1.0 m pathlength, 550 μm i.d. and 250 μL internal volume) was used to enhance the sensitivity of the detection. The determination for both ions is based on a colorimetric reaction with zincon at different pH values. The developed methodology compares favourably with other previously described procedures, as it allows to reach low detection limits for both cations (LODs of 0.1 and 2 μg L−1, for copper and zinc, respectively), without the need for any pre-concentration step. The system also provided a linear response up to 100 μg L−1 with a high throughput (43 h−1) and low reagent consumption and effluent production. The developed work was applied to natural waters and three certified reference water samples.  相似文献   

17.
A novel capillary electrophoresis (CE) approach has been developed for the simultaneous rapid separation and identification of common environmental inorganic anions and cations from a single sample injection. The method utilised a sequential injection-capillary electrophoresis instrument (SI-CE) with capacitively-coupled contactless conductivity detection (C4D) constructed in-house from commercial-off-the-shelf components. Oppositely charged analytes from a single sample plug were simultaneously injected electrokinetically onto two separate capillaries for independent separation and detection. Injection was automated and may occur from a syringe or be directly coupled to an external source in a continuous manner. Software control enabled high sample throughput (17 runs per hour for the target analyte set) and the inclusion of an isolation valve allowed the separation capillaries to be flushed, increasing throughput by removing slow migrating species as well as improving repeatability. Various environmental and industrial samples (subjected only to filtering) were analysed in the laboratory with a 3 min analysis time which allowed the separation of 23 inorganic and small organic anions and cations. Finally, the system was applied to an extended automated analysis of Hobart Southern Water tap water for a period of 48 h. The overall repeatability of the migration times of a 14 analyte standard sample was less than 0.74% under laboratory conditions. LODs ranged from 5 to 61 μg L−1. The combination of automation, high confidence of peak identification, and low limits of detection make this a useful system for the simultaneous identification of a range of common inorganic anions and cations for discrete or continuous monitoring applications.  相似文献   

18.
A method was developed for the quantitative determination of cations and anions in Antarctic ice cores at μg L−1 and sub-μg L−1 levels by ion chromatography (IC), after ultra-clean decontamination procedures. Strict manipulation and decontamination procedures were used in sub-sampling, in order to minimise sample contamination. Na+, NH4+, K+, Mg2+ and Ca2+ were determined by 12-min isocratic elution (H2SO4 eluent). Contemporaneously, in a parallel device, F, MSA (methanesulfonic acid), Cl, NO3 and SO42− were analysed in a single 12-min run with multiple-step elution using Na2CO3/NaHCO3 as eluent. Melted ice samples were pumped from their still-closed containers (polystyrene accuvettes with polyethylene caps), shared between the two ion chromatographic systems, online filtered (0.45 μm Teflon membrane) and pre-concentrated (anions and cations pre-concentration columns) using a flow analysis system, thus avoiding uptake of contaminants from the laboratory atmosphere. Sensitivity, linear range, reproducibility and detection limit were evaluated for each chemical species. Anion or cation detection limits ranged from 0.01 to 0.15 μg L−1 by using a relatively small sample volume (1.5 mL). Such values are significantly lower than those reported in literature for almost all the components. These methods were successfully applied to the analysis of cations and anions at trace levels in the Dome C ice core. The composition of the atmospheric aerosol for the last 850 kyr was reconstructed by high-resolution continuous chemical stratigraphies. Concentration trends in the last nine glacial-interglacial climatic cycles were shown and briefly discussed.  相似文献   

19.
A cloud point extraction process using mixed micelle of the cationic surfactant CTAB and non-ionic surfactant TritonX-114 to extract uranium(VI) from aqueous solutions was investigated. The method is based on the color reaction of uranium with pyrocatechol violet in the presence of potassium iodide in hexamethylenetetramine buffer media and mixed micelle-mediated extraction of complex. The optimal extraction and reaction conditions (e.g. surfactant concentration, reagent concentration, effect of time) were studied and the analytical characteristics of the method (e.g. limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 0.20-10.00 ng mL−1 of uranium(VI) ion and the detection limit of the method is 0.06 ng mL−1. The interference effect of some anions and cations was also tested. The method was applied to the determination of uranium(VI) in tap water, waste-water and well water samples.  相似文献   

20.
Hopper KG  Leclair H  McCord BR 《Talanta》2005,67(2):304-312
A novel electrolyte has been developed for the simultaneous separation of cations and anions in low explosive residue by capillary electrophoresis. This electrolyte contains 15 mM α-hydroxyisobutyric acid (HIBA) as the buffer, 6 mM imidazole as the cation chromophore, 3 mM 1,3,6-naphthalenetrisulfonic acid (NTS) as the anion chromophore, 4 mM 18-crown-6 ether as a cation selectivity modifier, and 5% (v/v) acetonitrile as an organic modifier. The pH was adjusted to 6.5 using tetramethylammonium hydroxide (TMAOH), an electroosmotic flow modifier. The method was optimized by varying the concentrations of α-HIBA, imidazole, and 1,3,6-NTS at three different pH values. The results provided a simultaneous indirect photometric analysis of both anions and cations with detection limits ranging from 0.5 to 5 ppm for anions and from 10 to 15 ppm for cations with a total run time of under 7 min. The method was then applied to the analysis of Pyrodex® RS and black powder, as well as several smokeless powders. The results obtained were consistent with previously reported results for separate anion and cation analysis and provide a faster, more complete analysis of each sample in a single chromatographic run.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号