首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对组成复杂的生物样品中的低丰度磷酸化肽进行预富集,能够消除高丰度非磷酸化肽等干扰组分,从而提高磷酸化肽在质谱分析中的灵敏度,获得更好的检出和鉴定结果.在磷酸化肽富集过程中,对磷酸化肽具有选择性亲和作用的富集材料是实现对磷酸化肽特异高效富集的关键,多种具有不同类型亲和作用的富集材料已在磷酸化肽富集研究中得到了应用;而在材料形貌、富集操作形式、磷酸化肽富集特异性等方面,研究者们也不断在现有磷酸化肽富集材料的基础上进行多样化的改进.本文分别从不同类型亲和作用的磷酸化肽富集材料以及磷酸化肽富集方法改进两方面,对近年来磷酸化肽富集方法的研究进展进行了评述.  相似文献   

2.
The strategy to concentrate phosphopeptides has become a critical issue for mapping protein phosphorylation sites, which are well known as posttranslational modifications in proteomics. In this study, we propose a simple and highly sensitive method for phosphopeptide enrichment on NiO nanoparticles (NPs) from a trypsin predigested phosphoprotein complex solution in a microwave oven. Furthermore, this technique was combined with centrifugation on-particle ionization/enrichment of phosphopeptides and phosphopeptides were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Weak magnetism of these NPs and a positive surface charge effect at low pH accomplished rapid and selective phosphopeptide enrichment within 30s. Trypsin-digested products of phosphoproteins such as α-casein and β-casein, human blood serum, nonfat milk, and egg white were also investigated to explore their phosphopeptide enrichment from complex samples by this approach. The results demonstrate that NiO NPs exhibit good affinity to trace the phosphopeptides even in the presence of 30 times higher molar concentration of complex solution of non-phosphopeptide proteolytic predigested bovine serum albumin. The detection limits of NiO NPs for α-casein and β-casein were 2.0?×?10(-9) M, with good signal-to-noise ratio in the mass spectrum. NiO NPs were found to be effective and selective for enrichment of singly and multiply phosphorylated peptides at a trace level in complex samples in a microwave oven. The cost of preparing NiO NPs is low, the NiO NPs are thermally stable, and therefore, they hold great promise for use in phosphopeptide enrichment.  相似文献   

3.
The enrichment of phosphopeptides using immobilized metal ion affinity chromatography (IMAC) and subsequent mass spectrometric analysis is a powerful protocol for detecting phosphopeptides and analyzing their phosphorylation state. However, nonspecific binding peptides, such as acidic, nonphosphorylated peptides, often coelute and make analyses of mass spectra difficult. This study used a partial chemical tagging reaction of a phosphopeptide mixture, enriched by IMAC and contaminated with nonspecific binding peptides, following a modified beta-elimination/Michael addition method, and dynamic mass analysis of the resulting peptide pool. Mercaptoethanol was used as a chemical tag and nitrilotriacetic acid (NTA) immobilized on Sepharose beads was used for IMAC enrichment. The time-dependent dynamic mass analysis of the partially tagged reaction mixture detected intact phosphopeptides and their mercaptoethanol-tagged derivatives simultaneously by their mass difference (-20 Da for each phosphorylation site). The number of new peaks appearing with the mass shift gave the number of multiply phosphorylated sites in a phosphopeptide. Therefore, this partial chemical tagging/dynamic mass analysis method can be a powerful tool for rapid and efficient phosphopeptide identification and analysis of the phosphorylation state concurrently using only MS analysis data.  相似文献   

4.
Due to the low abundance of phosphoproteins and substoichiometry of phosphorylation, the elucidation of protein phosphorylation requires highly specific materials for isolation of phosphopeptides from biological samples prior to mass spectrometric analysis. In this study, chlorophosphonazo type derivatives of chromotropic acid including p-hydroxychlorophosphonazo (HCPA) and chlorophosphonazo I (CPA I), traditionally used in the photometric determination of transition metal ions, have been employed as chelating ligands in the preparation of novel affinity materials for phosphopeptide enrichment. The chromogenic reagents of HCPA and CPA I were chemically modified on the surface of silica nanoparticles, and the functionalized materials were charged with zirconium ions through the strong complexation between chelating ligands and Zr(4+). The obtained zirconium-chlorophosphonazo chelate-modified silica nanoparticles (Zr-HCPA-SNPs and Zr-CPA I-SNPs) were applied to the selective enrichment of phosphopeptides, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The purification procedures were optimized using α-casein digest at first, and then the performance of these two affinity materials for efficient and specific enrichment of phosphopeptides was evaluated with the tryptic digests of standard proteins (α-casein, β-casein, ovalbumin and bovine serum albumin). It is found that Zr-HCPA-SNPs are superior to Zr-CPA I-SNPs in phosphopeptide enrichment. Using Zr-HCPA-SNPs to trap phosphopeptides in α-casein digest, the detection limit was close to 50fmol based on MALDI-TOF MS analysis. Finally, Zr-HCPA-SNPs were used to directly isolate phosphopeptides from diluted human serum of healthy, diabetes and hypertension persons, respectively. Our results show that the constitution and level of phosphopeptides are remarkably different among the three groups, which indicate the powerful potentials of Zr-HCPA-SNPs in disease diagnosis and biomarker screening.  相似文献   

5.
Reversible protein phosphorylation mediated by protein kinases and phosphatases is the most studied post-translational modification. Efficient characterization of phosphoproteomes is hampered by (1) low stoechiometry, (2) the dynamic nature of the phosphorylation process and (3) the difficulties of mass spectrometry to identify phosphoproteins from complex mixtures and to determine their sites of phosphorylation. Combination of the phosphopeptide enrichment method with MALDI-TOFMS, or alternatively, with HPLC-ESI-MS/MS and MS(3) analysis was shown to be a step forward for the successful application of MS in the study of protein phosphorylation. In our study we used phosphopeptide enrichment performed in a simple single-tube experiment using zirconium dioxide (ZrO(2)). A simple protein mixture containing precipitated bovine milk caseins was enzymatically digested and the mixture of tryptic fragments was analysed before and after enrichment using nanoflow HPLC-ESI-MS/MS and surface-enhanced laser desorption/ionization (SELDI)-MS/MS on QqTOF instruments to compare the efficiency of the two methods in the determination of phosphorylation sites. Both approaches confirm the high selectivity obtained by the use of batch-wise, ZrO(2)-based protocol using di-ammonium phosphate as the eluting buffer. More phosphorylation sites (five for beta-casein and three for alpha(S1)-casein) were characterized by SELDI-MS/MS than by nanoflow HPLC-ESI-MS/MS. Therefore, ZrO(2)-based phosphopeptide enrichment combined with SELDI-MS/MS is an attractive alternative to previously reported approaches for the study of protein phosphorylation in mixtures of low complexity with the advance of fast in situ peptide purification. The method was limited to successful analysis of high-abundance proteins. Only one phosphorylation site was determined for the minor casein component alpha(S2)-casein by ESI-MS/MS and none for kappa-casein. Therefore an improvement in enrichment efficiency, especially for successful phosphoproteomic applications, is needed.  相似文献   

6.
迟明  毕炜  卢庄  宋丽娜  贾伟  张养军  钱小红  蔡耘 《色谱》2010,28(2):152-157
二氧化钛富集法作为目前使用最为广泛的金属氧化物富集磷酸肽的方法,在富集过程中常常对富含天冬氨酸和谷氨酸的酸性非磷酸化肽段存在一定的非特异性吸附作用。这些肽段与磷酸化肽段一同被富集,降低了磷酸肽富集的选择性。传统方法中使用的非特异性吸附抑制剂常会对质谱的电喷雾离子源造成污染,因而限制了其在液相色谱-质谱联用(LC-MS)系统中的应用。本研究将天冬氨酸作为一种新型的非特异性吸附抑制剂加入到二氧化钛富集体系中,并分别对3种和9种标准蛋白质酶切肽段混合物进行富集实验,同时与添加另一种非特异性吸附抑制剂——谷氨酸以及不添加任何非特异性吸附抑制剂的富集体系进行了富集效果的比较。结果表明,天冬氨酸可以有效地提高二氧化钛对磷酸肽富集的选择性。将添加天冬氨酸的二氧化钛富集体系应用于鼠肝全蛋白质磷酸肽的富集中,同样取得了很好的效果,表明天冬氨酸在复杂的生物样本的磷酸肽富集中也同样具有良好的应用前景。此外,由于天冬氨酸在反相色谱中极易被洗脱去除,从而避免了传统抑制剂对LC-MS系统离子源的污染问题。  相似文献   

7.
蛋白质磷酸化修饰是一种重要的蛋白质翻译后修饰,在细胞代谢过程中发挥着重要作用。当蛋白质的正常磷酸化调节发生异常时,会导致癌症、糖尿病、心脏病等各种疾病的发生。因此,蛋白磷酸化分析对于疾病的早期快速诊断、药物筛选和治疗等方面具有重大的意义。由于蛋白质磷酸化过程是动态的,并且磷酸化肽段或蛋白在生物样品中的含量较低,因此高灵敏的蛋白磷酸化分析面临着巨大的挑战。该文依据在检测过程中,选择性识别或捕获磷酸化的肽段或蛋白的主要机理,综述了近几年纳米材料对磷酸化肽段的富集和信号放大作用在蛋白磷酸化分析中的研究进展,并对其未来研究方向进行了展望。  相似文献   

8.
Several affinity resins consisting of ionic metals or metal oxides were investigated for their phosphopeptide enrichment capabilities with subsequent mass spectrometric analyses. Commercially-available enrichment metal oxide affinity chromatography (MOAC) resins using manufacturer’s and/or published protocols were compared and evaluated for the most efficient and selective method that could be implemented as a standard enrichment procedure. From these comparative analyses, using a tryptic digest of casein proteins, it was determined that in our hands, two of the resins out-performed the others based on a variety of criteria, including the number of phosphorylation sites identified during MS analyses, the lower numbers of nonspecifically bound peptides observed, and the limits of detection. Applicability of these enrichment resins to a complex biological mixture was investigated. For this work, a mixture of avian histones was digested, subjected to titanium dioxide phosphopeptide enrichment, and analyzed by mass spectrometry. Eight phosphorylated tryptic peptides were observed following enrichment and subsequent LC/MS/MS analyses. Of note, seven of the eight phosphopeptides were not observed without titanium dioxide enrichment. From these analyses, four sites of phosphorylation were unequivocally determined, two of which have not been reported previously. Four additional phosphopeptides were observed; however, the site of phosphorylation could not be distinguished but was localized to one of two possible amino acids. These methods should aid in the investigation of proteins post-translationally modified with phosphate, especially those present at low concentrations as was demonstrated by successful enrichment at the femtomole level.  相似文献   

9.
翟贵金  吴魁  汪福意 《色谱》2016,34(12):1192-1198
血清中磷酸化肽种类和浓度的变化既能反映人体内蛋白质水解酶活性的变化,又能反映蛋白质翻译后磷酸化的水平,业已成为肿瘤标志物寻找和发现的重要目标。因而,血清中磷酸化肽的鉴定及其定量分析在具有临床应用价值的肿瘤标志物的筛选与发现中起着重要作用。由于血清中的内源性磷酸化肽丰度极低,在质谱分析中的离子化效率不高,且受到来自高丰度非磷酸化肽和蛋白质的信号抑制及干扰,血清中磷酸化肽的质谱定量分析是分析化学研究中的一个巨大挑战。文章对血清磷酸化肽的分离富集、质谱定量分析及其作为肿瘤标志物的筛选和评价等3个方面的研究进展进行总结、评述,并展望该领域的未来研究趋势和应用前景。  相似文献   

10.
Protein phosphorylation is one of the most important post-translational modifications (PTM), however, the detection of phosphorylation in proteins using mass spectrometry (MS) remains challenging. This is because many phosphorylated proteins are only present in low abundance, and the ionization of the phosphorylated components in MS is very inefficient compared to the non-phosphorylated counterparts. Recently, we have reported a selective injection technique that can separate phosphopeptides from non-phosphorylated peptides due to the differences in their isoelectric points (pI) [1]. Phosphorylated peptides from α-casein were clearly observed at low femtomole level using MALDI MS. In this work, further developments on selective injection of phosphopeptides are presented to enhance its capability in handling higher sample complexity. The approach is to integrate selective injection with a sample stacking technique used in capillary electrophoresis to enrich the sample concentration, followed by electrophoresis to fractionate the components in preparation for MALDI MS analysis. The effectiveness of the selective injection and stacking was evaluated quantitatively using a synthetic phosphopeptide as sample, with an enrichment factor of up to 600 being recorded. Next, a tryptic digest of α-casein was used to evaluate the separation and fractionation of peptides for MALDI MS analysis. The elution order of phosphopeptides essentially followed the order of decreasing number of phosphates on the peptides. Finally, to illustrate the applicability, the integrated procedure was applied to evaluate the phosphorylation of a highly phosphorylated protein, osteopontin. Up to 41 phosphopeptides were observed, which allowed us to examine the phosphorylation of all 29 possible sites previously reported [2]. A high level of heterogeneity in the phosphorylation of OPN was evident by the multiple-forms of variable phosphorylation detected for a large number of peptides.  相似文献   

11.
Enrichment, separation and mass spectrometric analysis of biomolecules carrying a phosphate group plays an important role in current analytical chemistry. Application areas range from the preparative enrichment of phospholipids for biotechnological purposes and the separation and purification of plasmid DNA or mRNA to the specific preconcentration of phosphoproteins and -peptides to facilitate their later identification and characterization by mass spectrometry. Most of the recent improvements in this field were triggered by the need for phosphopeptide enrichment technology for the analysis of cellular protein phosphorylation events with the help of liquid chromatography–mass spectrometry. The high sensitivity of mass spectrometry and the possibility to combine this technique with different separation modes in liquid chromatography have made it the method of choice for proteome analysis. However, in the case of phosphoprotein analysis, the low abundance of the resulting phosphopeptides and their low quality fragment spectra interfere with the identification of phosphorylation events. Recent developments in phosphopeptide enrichment and fragmentation technologies successfully helped to overcome these limitations. In this review, we will focus on sample preparation techniques in the field of phosphoproteomics, but also highlight recent advancements for the analysis of other phosphorylated biomolecules.  相似文献   

12.
Han G  Ye M  Zou H 《The Analyst》2008,133(9):1128-1138
Protein phosphorylation is one of the most biologically relevant and ubiquitous post-translational modifications. The analysis of protein phosphorylation is very challenging due to its highly dynamic nature and low stoichiometry. In this article, recent techniques developed for phosphoproteome analysis are reviewed with an emphasis on the new developments in this field in China. To improve the performance of phosphoproteome analysis, many novel methods, either by application of new separation mechanisms or by adoption of new separation materials, were developed to specifically enrich phosphopeptides from complex protein digests. A series of new materials, including nanostructure materials, magnetic materials, and monolithic materials, were applied to prepare immobilized affinity chromatography or metal oxide affinity chromatography to improve the performance of phosphopeptide enrichment. Besides, new software tools were also developed to validate phosphopeptide identification and predict kinase specific phosphorylation sites.  相似文献   

13.
Phosphopeptide enrichment based on metal oxide affinity chromatography is one of the most powerful tools for studying protein phosphorylation on a large scale. To complement existing metal oxide sorbents, we have recently introduced tin dioxide as a promising alternative. The preparation of SnO2 microspheres by the nanocasting technique, using silica of different morphology as a template, offers a strategy to prepare materials that vary in their particle size and their porosity. Here, we demonstrate how such stannia materials can be successfully generated and their properties fine-tuned in order to obtain an optimized phosphopeptide enrichment material. We combined data from liquid chromatography-mass spectrometry experiments and physicochemical characterization, including nitrogen physisorption and energy-dispersive X-ray spectroscopy (EDX), to explain the influence of the various experimental parameters.  相似文献   

14.
张宝会  王晨桐  郭淼  肖华 《色谱》2021,39(1):77-86
磷酸化是蛋白质翻译后修饰的重要形式之一,其异常往往会导致细胞内信号通路的紊乱和疾病的发生。固定化金属离子亲和色谱(IMAC)是磷酸化肽段的高效富集技术,在磷酸化蛋白质组研究方面应用广泛。该研究以金属钛离子(Ti4+)螯合IMAC材料(Ti4+-IMAC)为载体,进行磷酸化肽段富集。比较了10 μm Ti4+-IMAC通过振荡法和固相萃取法(SPE)富集磷酸肽的效果,发现振荡法可以富集到更多的磷酸肽;对比了两种尺寸(10 μm和30 μm)Ti4+-IMAC在磷酸化肽段富集中的差异,发现小尺寸材料富集效果更佳。进一步采用优化的策略比较了不同转移能力肺癌细胞的磷酸化蛋白质组,免标记定量蛋白质组学结果表明,优化的Ti4+-IMAC方法可以从正常的肺成纤维细胞MRC5、低转移肺癌细胞95C和高转移肺癌细胞95D中分别鉴定到510、863和1108种磷酸化蛋白质,其中317种为3组所共有。该研究共鉴定到1268种磷酸化蛋白质上的7560个磷酸化位点,其中1130个为差异磷酸化位点,文献报道显示部分异常表达的激酶与癌症转移密切相关。通过生信对比分析发现,异常表达的磷酸化蛋白质主要与细胞侵袭、迁移和死亡等细胞迁移方面的功能有关。通过优化磷酸化肽富集策略,初步阐明了磷酸化蛋白质网络的异常与肺癌转移之间的相关性,该方法有望用于肺癌进展相关的磷酸化位点、磷酸化蛋白质及其信号通路研究。  相似文献   

15.
Reversible phosphorylation of proteins is a common theme in the regulation of important cellular functions such as growth, metabolism, and differentiation. The comprehensive understanding of biological processes requires the characterization of protein phosphorylation at the molecular level. Although, the number of cellular phosphoproteins is relatively high, the phosphorylated residues themselves are generally of low abundance due to the sub-stoichiometric nature. However, low abundance of phosphopeptides and low degree of phosphorylation typically necessitates isolation and concentration of phosphopeptides prior to mass spectrometric analysis. In this study, we used trivalent lanthanide ions (LaCl(3), CeCl(3), EuCl(3), TbCl(3), HoCl(3), ErCl(3), and TmCl(3)) for phosphopeptide enrichment and cleaning-up. Due to their low solubility product, lanthanide ions form stable complexes with the phosphate groups of phosphopeptides and precipitate out of solution. In a further step, non-phosphorylated compounds can easily be removed by simple centrifugation and washing before mass spectrometric analysis using Matrix-assisted laser desorption/ionisation-time of flight. The precipitation method was applied for the isolation of phosphopeptides from standard proteins such as ovalbumin, α-casein, and β-casein. High enrichment of phosphopeptides could also be achieved for real samples such as fresh milk and egg white. The technology presented here represents an excellent and highly selective tool for phosphopeptide recovery; it is easily applicable and shows several advantages as compared with standard approaches such as TiO(2) or IMAC.  相似文献   

16.
以Fmoc-策略固相合成方法为基础,以亚磷酰胺为磷酸化试剂,分别以总体磷酸化法和单体磷酸化法合成了多种磷肽、修饰磷肽及其对应的非磷酸化多肽,并以乙腈/水/0.06%三氟乙酸为洗脱体系,用HPLC对磷肽和多肽进行分离.肽链的长度增加,总体法的磷酸化效率降低;这种基于Fmoc-策略的单体磷酸化法目前只适用于含酪氨酸磷肽的合成.  相似文献   

17.
提出一种除盐-富集串联用于磷酸肽富集研究的思路。选用C18柱和铈(Ⅳ)修饰的壳聚糖材料进行脱盐实验,以制备的基于聚合物基体螯合Fe3+的亲和色谱材料为富集材料。将直接富集和串联策略应用到标准品和血清中,研究结果表明,该富集材料具有高选择性和高灵敏度(1.6 fmol),铈(Ⅳ)修饰的壳聚糖材料前提下的串联策略能明显降低样品的复杂性。相比直接富集方法,能够提高磷酸化肽的覆盖率。  相似文献   

18.
Phosphorylation of proteins is an important cellular regulatory process. The analysis of protein phosphorylation is challenging due to the high dynamic range and low abundance natures of phosphorylated species. Mass spectrometry (MS) of phosphopeptides obtained from tryptic protein digests is the method-of-choice for characterization of phosphorylated proteins. However, determination of phosphopeptides by MS represents a major challenge, especially in the presence of unmodified peptides. Due to lower ionization efficiency of phosphopeptides, as well as the fact that the stoichiometry of phosphorylation is often present at low relative abundance, efficient enrichment of the phosphorylated peptides prior to MS analysis is therefore of high demand. In addition, successful identification of peptides with different phosphorylation grades still remains challenging.  相似文献   

19.
熊芳芳  江丹丹  贾琼 《色谱》2020,38(1):60-65
蛋白质磷酸化是最重要和最普遍的翻译后修饰之一。基于质谱的技术已成为分析蛋白质磷酸化的重要手段。然而,磷酸化肽固有的低丰度和电离效率以及由非磷酸化肽共存引起的严重抑制使得直接质谱分析仍然是一个挑战。为解决此问题,需在质谱分析前对磷酸化蛋白质进行选择性富集。磁性纳米材料具有良好的磁响应性,可以在外界磁铁的帮助下实现与溶液的迅速分离。功能化磁性纳米材料作为一种新型的分析技术已在蛋白质组学研究中得到广泛的应用。该文就近年来对磁性纳米粒子进行各种功能化修饰以提高其特异性吸附能力的吸附材料在磷酸化肽的富集方面的应用予以综述,并展望了功能化磁性纳米材料在磷酸化肽富集领域的应用前景。  相似文献   

20.
Zirconium, titanium, and hafnium oxide-coated stainless steel surfaces are fabricated by reactive landing of gas-phase ions produced by electrospray ionization of group IVB metal alkoxides. The surfaces are used for in situ enrichment of phosphopeptides before analysis by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. To evaluate this method we characterized ZrO2 (zirconia) surfaces by (1) comparison with the other group IVB metal oxides of TiO2 (titania) and HfO2 (hafnia), (2) morphological characterization by SEM image analysis, and (3) dependence of phosphopeptide enrichment on the metal oxide layer thickness. Furthermore, we evaluated the necessity of the reactive landing process for the construction of useful metal oxide surfaces by preparing surfaces by electrospray deposition of Zr, Ti, and Hf alkoxides directly onto polished metal surfaces at atmospheric pressure. Although all three metal oxide surfaces evaluated were capable of phosphopeptide enrichment from complex peptide mixtures, zirconia performed better than hafnia or titania as a result of morphological characteristics illustrated by the SEM analysis. Metal oxide coatings that were fabricated by atmospheric pressure deposition were still capable of in situ phosphopeptide enrichment, although with inferior efficiency and surface durability. We show that zirconia surfaces prepared by reactive landing of gas-phase ions can be a useful tool for high throughput screening of novel phosphorylation sites and quantitation of phosphorylation kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号