首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, mesoporous TiO2 microspheres were synthesized by simple hydrothermal reaction, and successfully developed for phosphopeptides enrichment from both standard protein digestion and real biological sample such as rat brain tissue extract. The mesoporous TiO2 microspheres (the diameter size of about 1.0 μm) obtained by simple hydrothermal method were found to have a specific surface area of 84.98 m2/g, which is much larger than smooth TiO2 microspheres with same size. The surface area of mesoporous TiO2 microspheres is almost two times of commercial TiO2 nanoparticle (a diameter of 90 nm). Using standard proteins digestion and real biological samples, the superior selectivity and capacity of mesoporous TiO2 microspheres for the enrichment of phosphorylated peptides than that of commercial TiO2 nanoparticles and TiO2 microspheres was also observed. It has been demonstrated that mesoporous TiO2 microspheres have powerful potential for selective enrichment of phosphorylated peptides. Moreover, the preparation of the mesoporous TiO2 microspheres obtained by the hydrothermal reaction is easy, simple and low-cost. These mesoporous TiO2 microspheres with the ability of large scale synthesis can widely be applied for phosphorylated proteomic research.  相似文献   

2.
In this study, zirconium oxide (ZrO2) aerogel was synthesized via a green sol–gel approach, with zirconium oxychloride, instead of the commonly used alkoxide with high toxicity, as the precursor. With such material, phosphopeptides from the digests of 4 pmol of β-casein with the coexistence of 100 times (mol ratio) BSA could be selectively captured, and identified by MALDI-TOF MS. Due to the large surface area (416.0 m2 g−1) and the mesoporous structure (the average pore size of 10.2 nm) of ZrO2 aerogel, a 20-fold higher loading capacity for phosphopeptide, YKVPQLEIVPN[pS]AEER (MW 1952.12), was obtained compared to that of commercial ZrO2 microspheres (341.5 vs. 17.87 mg g−1). The metal oxide aerogel was further applied in the enrichment of phosphopeptides from 100 ng nonfat milk, and 17 phosphopeptides were positively identified, with a 1.5-fold improvement in phosphopeptide detection compared with previously reported results. These results demonstrate that ZrO2 aerogel can be a powerful enrichment material for phosphoproteome study.  相似文献   

3.
TiO2 nanotubes, a new nanomaterial, are often used in the photocatalysis. Due to its relatively large specific surface areas it should have a higher enrichment capacity. However, very few applications in the enrichment of pollutants were found. This paper described a new procedure to investigate the trapping power of TiO2 nanotubes with cadmium and nickel in water samples as the model analytes and flame atomic absorption spectrometry for the analysis. The possible parameters influencing the enrichment were optimized. Under the optimal SPE conditions, the method detection limits and precisions (R.S.D., n = 6) were 0.25 ng mL−1 and 2.2% for cadmium, 1 ng mL−1 and 2.6% for nickel, respectively. The established method has been successfully applied to analyze four realworld water samples, and satisfactory results were obtained. The spiked recoveries were in the range of 90.2-99.2% for them. All these indicated that TiO2 nanotubes had great potential in environmental field.  相似文献   

4.
The phosphorylation of proteins is a major post-translational modification that is required for the regulation of many cellular processes and activities. Mass spectrometry signals of low-abundance phosphorylated peptides are commonly suppressed by the presence of abundant non-phosphorylated peptides. Therefore, one of the major challenges in the detection of low-abundance phosphopeptides is their enrichment from complex peptide mixtures. Titanium dioxide (TiO2) has been proven to be a highly efficient approach for phosphopeptide enrichment and is widely applied. In this study, a novel TiO2 plate was developed by coating TiO2 particles onto polydimethylsiloxane (PDMS)-coated MALDI plates, glass, or plastic substrates. The TiO2-PDMS plate (TP plate) could be used for on-target MALDI-TOF analysis, or as a purification plate on which phosphopeptides were eluted out and subjected to MALDI-TOF or nanoLC-MS/MS analysis. The detection limit of the TP plate was ∼10-folds lower than that of a TiO2-packed tip approach. The capacity of the ∼2.5 mm diameter TiO2 spots was estimated to be ∼10 μg of β-casein. Following TiO2 plate enrichment of SCC4 cell lysate digests and nanoLC-MS/MS analysis, ∼82% of the detected proteins were phosphorylated, illustrating the sensitivity and effectiveness of the TP plate for phosphoproteomic study.  相似文献   

5.
SiO2/TiO2 composite microspheres with microporous SiO2 core/mesoporous TiO2 shell structures were prepared by hydrolysis of titanium tetrabutylorthotitanate (TTBT) in the presence of microporous silica microspheres using hydroxypropyl cellulose (HPC) as a surface esterification agent and porous template, and then dried and calcined at different temperatures. The as-prepared products were characterized with differential thermal analysis and thermogravimetric (DTA/TG), scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption. The results showed that composite particles were about 1.8 μm in diameter, and had a spherical morphology and a narrow size distribution. Uniform mesoporous titania coatings on the surfaces of microporous silica microspheres could be obtained by adjusting the HPC concentration to an optimal concentration of about 3.2 mmol L−1. The anatase and rutile phase in the SiO2/TiO2 composite microspheres began to form at 700 and 900 °C, respectively. At 700 °C, the specific surface area and pore volume of the SiO2/TiO2 composite microspheres were 552 and 0.652 mL g−1, respectively. However, at 900 °C, the specific surface area and pore volume significantly decreased due to the phase transformation from anatase to rutile.  相似文献   

6.
Zhou G  Fung KK  Wong LW  Chen Y  Renneberg R  Yang S 《Talanta》2011,84(3):659-665
The use of rod-like and vesicle-like mesoporous SiO2 particles for fabricating high performance glucose biosensors is reported. The distinctively high surface areas of mesoporous structures of SiO2 rendered the adsorption of glucose oxidase (GOx) feasible. Both morphologies of SiO2 enhanced the sensitivities of glucose biosensors, but by a factor of 36 for vesicle-like SiO2 and 18 for rod-like SiO2, respectively. The greater enhancement of vesicle-like SiO2 can be accounted for by its higher specific surface area (509 m2 g−1) and larger total pore volume (1.49 cm3 g−1). Interestingly, the current responses of GOx immobilized in interior channels of the mesoporous SiO2 were enhanced much more than those of simple mixtures of GOx and the mesoporous SiO2. This suggests that the enhancement of current responses arise not only from the high surface area of SiO2 for high enzyme loading, but also from the improved enzyme activity upon its adsorption on mesoporous SiO2. Also compared were the performances of glucose biosensors with GOx immobilized on mesoporous SiO2 by physical adsorption and by covalent binding to 3-aminopropyltrimethoxysilane (APTMS) modified SiO2 using glutaraldehyde as the cross-linker. The covalent binding approach resulted in higher enzyme loading but lower current sensitivity than with the physical adsorption.  相似文献   

7.
This article describes the preparation of mesoporous rod-like F-N-codoped TiO2 powder photocatalysts with anatase phase via a sol-gel route at the temperature of 373 K, using cetyltrimethyl ammonium bromide (CTAB) as surfactant. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectra (UV-vis DRS). The results showed that the photocatalysts possessed a homogeneous pore diameter and a high surface area of 106.3-160.7 m3 g−1. The increasing CTAB reactive concentration extended the visible-light absorption up to 600 nm. The F-N-codoped TiO2 powders exhibited significant higher adsorption capacity for methyl orange (MO) than that of Degussa P25 and showed more than 6 times higher visible-light-induced catalytic degradation for MO than that of P25.  相似文献   

8.
Using composite surfactant templates, polyoxyethylene (20) oleyl ether (Brij98) and cetyl trimethyl ammonium bromide (CTAB), as structure-directing agents, N and La co-doped mesoporous TiO2 complex photocatalysts were synthesized successfully. The micromorphology of co-doped mesoporous TiO2 samples was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FT-IR), energy-dispersive X-ray spectrometer (EDS) and N2 adsorption-desorption measurements. The results indicated that the complex photocatalyst prepared with a molar ratio of Brij98:CTAB=1:1 showed a uniform pore size of ca. 7 nm and a high specific surface area (SBET) of 279.0 m2 g−1, and exhibited the highest photocatalytic activity for degradation of papermaking wastewater under ultra-violet light irradiation. The chemical oxygen demand (CODcr) percent degradation was about 73% in 12 h and chroma percent degradation was 100% in 8 h.  相似文献   

9.
A novel adsorbent of thiacalix[4]arene tetracarboxylate derivative modified mesoporous TiO2 was prepared and was used as a packing material for flow injection (FI) micro-column (20 mm × 4.0 mm i.d.) separation/preconcentration on-line coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) simultaneous determination of trace metals (V, Cu, Pb, Cr) in environmental water samples. The experimental conditions for modified mesoporous TiO2 packed micro-column separation/preconcentration of the target metals were optimized and the interference of commonly coexisting ions was examined. The adsorption capacities of thiacalix[4]arene tetracarboxylate derivative modified mesoporous TiO2 for V, Cu, Pb and Cr were found to be 14.0, 11.7, 17.7 and 14.5 mg g− 1, respectively. The detection limits of the method were 0.09, 0.23, 0.50 and 0.15 µg L− 1 for V, Cu, Pb and Cr, respectively, with a preconcentration factor of 20. The precision of this method were 1.7% (V), 3.9% (Cu), 4.6% (Pb) and 2.9% (Cr) (n = 7, C = 5 µg L− 1), respectively. The developed method was applied to the determination of trace heavy metals in real samples and the recoveries for spiked samples were found to be in the range of 88.7-107.1%. For validation, a certified reference material of GSBZ50009-88 environmental water sample was analyzed and the determined values were in good agreement with the certified values.  相似文献   

10.
Mesoporous TiO2 nanoparticles were synthesized with the hydrothermal method and characterized by powder X-ray diffraction (PXRD) and transmission electron microscope (TEM). Then a superior solid-phase microextraction (SPME) fiber was fabricated by sequentially coating the stainless steel fiber with silicone sealant film and mesoporous TiO2 powder. The developed fiber possessed a homogeneous surface and a long life-span up to 100 times at direct immersing (DI) extraction mode. Under the optimized conditions, the extraction efficiencies of the self-made 17 μm TiO2 fiber for six organochlorine pesticides (OCPs) were higher than those of the two commercial fibers (65 μm PDMS/DVB and 85 μm PA fibers) which were much thicker than the former. As for analytical performance, low detection limits (0.08–0.60 ng L−1) and wide linearity (5–5000 ng L−1) were achieved under the optimal conditions. The repeatabilities (n = 5) for single fiber were between 2.8 and 12.3%, while the reproducibilities (n = 3) of fiber-to-fiber were in the range of 3.7–15.7%. The proposed fiber was successfully applied to the sensitive analysis of OCPs in real water samples and four of the six analytes were detected from the rainwater and the lake water samples.  相似文献   

11.
The interaction of colloidal TiO2 nanoparticles with calf thymus-DNA was studied by using absorption, FT-IR, steady state and time resolved fluorescence spectroscopic techniques. The apparent association constant has been deduced (Kapp = 2.85 × 103 M−1) from the absorption spectral changes of the DNA-colloidal TiO2 nanoparticles using the Benesi–Hildebrand equation. Addition of colloidal TiO2 nanoparticles quenched the fluorescence of EtBr–DNA. The number of binding sites (n = 0.97) and the apparent binding constant (K = 6.68 × 103 M−1) were calculated from relevant fluorescence quenching data. The quenching, through a static mechanism, was confirmed by time resolved fluorescence spectroscopy.  相似文献   

12.
Baytak S  Zereen F  Arslan Z 《Talanta》2011,84(2):319-323
A trace element preconcentration procedure is described utilizing a minicolumn of yeast (Yamadazyma spartinae) immobilized TiO2 nanoparticles for determination of Cr, Cu, Fe, Mn, Ni and Zn from water samples by inductively coupled plasma atomic emission spectrometry. The elements were quantitatively retained on the column between pH 6 and 8. Elution was made with 5% (v/v) HNO3 solution. Recoveries ranged from 98 ± 2 (Cr) to 100 ± 4 (Zn) for preconcentration of 50 mL multielement solution (50 μg L−1). The column made up of 100 mg sorbent (yeast immobilized TiO2 NP) offers a capacity to preconcentrate up to 500 mL of sample solution to achieve an enrichment factor of 250 with 2 mL of 5% (v/v) HNO3 eluent. The detection limits obtained from preconcentration of 50 mL blank solutions (5%, v/v, HNO3, n = 11) were 0.17, 0.45, 0.25, 0.15, 0.33 and 0.10 μg L−1 for Cr, Cu, Fe, Mn, Ni and Zn, respectively. Relative standard deviation (RSD) for five replicate analyses was better than 5%. The retention of the elements was not affected from up to 500 μg L−1 Na+ and K+ (as chlorides), 100 μg L−1 Ca2+ (as nitrate) and 50 μg L−1 Mg2+ (as sulfate). The method was validated by analysis of freshwater standard reference material (SRM 1643e) and applied to the determination of the elements from tap water and lake water samples.  相似文献   

13.
This study presented an approach to prepare monodisperse immobilized Ti4+ affinity chromatography (Ti4+-IMAC) microspheres for specific enrichment of phosphopeptides in phosphoproteome analysis. Monodisperse polystyrene seed microspheres with a diameter of ca. 4.8 μm were first prepared by a dispersion polymerization method. Monodisperse microspheres with a diameter of ca. 13 μm were prepared using the seed microspheres by a single-step swelling and polymerization method. Ti4+ ion was immobilized after chemical modification of the microspheres with phosphonate groups. The specificity of the Ti4+-IMAC microspheres to phosphopeptides was demonstrated by selective enrichment of phosphopeptides from mixture of tryptic digests of α-casein and bovine serum albumin (BSA) at molar ratio of 1 to 500 by MALDI-TOF MS analysis. The sensitivity of detection for phosphopeptides determined by MALDI-TOF MS was as low as 5 fmol for standard tryptic digest of β-casein. The Ti4+-IMAC microspheres were compared with commercial Fe3+-IMAC adsorbent and homemade Zr4+-IMAC microspheres for enrichment of phosphopeptides. The phosphopeptides and non-phosphopeptides identified by Fe3+-IMAC, Zr4+-IMAC and Ti4+-IMAC methods were 26, 114, 127 and 181, 11, 11 respectively for the same tryptic digest samples. The results indicated that the Ti4+-IMAC had the best performance for enrichment of phosphopeptides.  相似文献   

14.
Li2CO3 and LiOH·H2O are widely used as Li-precursors to prepare LiFePO4 in solid-phase reactions. However, impurities are often found in the final product unless the sintering temperature is increased to 800 °C. Here, we report that lithium fluoride (LiF) can also be used as Li-precursor for solid-phase synthesis of LiFePO4 and very pure olivine phase was obtained even with sintering at a relatively low temperature (600 °C). Consequently, the product has smaller particle size (about 500 nm), which is beneficial for Li-extraction/insertion in view of kinetics. As for cathode material for Li-ion batteries, LiFePO4 obtained from LiF shows high Li-storage capacity of 151 mAh g−1 at small current density of 10 mA g−1 (1/15 C) and maintains capacity of 54.8 mAh g−1 at 1500 mA g−1 (10 C). The solid-state reaction mechanisms using LiF and Li2CO3 precursors are compared based on XRD and TG-DSC.  相似文献   

15.
A new method has been developed for the determination of gold based on separation and preconcentration with a microcolumn packed with nanometer TiO2 immobilized on silica gel (immobilized nanometer TiO2) prior to its determination by flame atomic absorption spectrometry. The optimum experimental parameters for preconcentration of gold, such as pH of the sample, sample flow rate and volume, eluent and interfering ions, have been investigated. Gold could be quantitatively retained by immobilized nanometer TiO2 in the pH range of 8-10, then eluted completely with 0.1 mol L−1 HNO3. The detection limit of this method for Au was 0.21 ng mL−1 with an enrichment factor of 50, and the relative standard deviation (R.S.D.) was 1.8% at the 100 ng mL−1 Au level. The method has been applied for the determination of trace amounts of Au in geological and water samples with satisfactory results.  相似文献   

16.
Highly ordered 2D-hexagonal mesoporous titanium silicate Ti-SBA-15 materials (space group p6mm) have been synthesized hydrothermally in acidic medium employing amphiphilic tri-block copolymer, Pluronic F127 as structure directing agent. Samples are characterized by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, FT IR spectroscopy, UV-visible diffuse reflectance measurements, N2 adsorption/desorption and TG-DTA analysis. XRD and TEM results suggested the presence of highly ordered mesophase with hexagonal pore arrangements. BET surface area for Ti-SBA-15 (924 m2 g−1) is considerably higher than the pure silica SBA-15 (611 m2 g−1) prepared following the same synthetic route. UV-visible and FT-IR studies suggested the incorporation of mostly tetrahedral titanium (IV) species, along with some six-coordinated sites in the silicate network. This material shows very good H2 adsorption capacity at higher pressure and excellent catalytic activity in the photocatalytic degradation of ecologically abundant dye methylene blue.  相似文献   

17.
Three-layer structure graphene/mesoporous silica composites incorporated with C8-modified interior pore-walls (graphene@mSiO2-C8) were prepared and applied for efficient extraction of glucocorticoid residuals in milk followed by liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis. The graphene@mSiO2-C8 nanocomposites were synthesized by coating C8-modified mesoporous silica onto hydrophilic graphene nanosheets through a simple surfactant-mediated co-condensation sol–gel process. The obtained nanosheets possess unique properties of large surface area (632 m2/g), extended plate-like morphology in the exterior surface, highly open pore structure with uniform pore size (2.8 nm), numerous C8-modified interior pore-walls, as well as good water dispersibility. The performance of the prepared graphene@mSiO2-C8 materials for extracting small hydrophobic molecules directly from complex protein-rich samples was evaluated by analysis of glucocorticoids in milk. Extraction conditions such as sorbents amount, type and volume of eluting solvent, time of adsorption and desorption were investigated and optimized to achieve the best efficiency. Method validations including linearity, recovery, repeatability, and limit of detection (LOD) were also studied. The results indicated that this methodology provided low LOD (S/N = 3, 0.0075–0.03 ng mL−1) and good linearity (0.03–60 ng mL−1, R2 > 0.996) for glucocorticoids. Satisfactory reusability and stability were also obtained during the extraction. Finally, the graphene@mSiO2-C8 composites were successfully applied to the extraction and residue analysis of glucocorticoids in real milk samples. The experimental results showed that this novel approach offered an attractive choice for convenient, efficient and rapid solid-phase extraction of targeted hydrophobic compounds in biological samples.  相似文献   

18.
The porous hierarchical spherical Co3O4 assembled by nanosheets have been successfully fabricated. The porosity and the particle size of the product can be controlled by simply altering calcination temperature. SEM, TEM and SAED were performed to confirm that mesoporous Co3O4 nanostructures are built-up by numerous nanoparticles with random attachment. The BET specific surface area and pore size of the product calcined at 280 °C are 72.5 m2 g−1 and 4.6 nm, respectively. Our experiments further demonstrated that electrochemical performances of the synthesized products working as an anode material of lithium-ion battery are strongly dependent on the porosity.  相似文献   

19.
Yu HM  Song H  Chen ML 《Talanta》2011,85(1):625-630
A novel adsorbent-silica gel bound dithizone (H2Dz-SG) was prepared and used as solid-phase extraction of copper from complex matrix. The H2Dz-SG is investigated by means of FT-IR spectra and the SEM images, demonstrating the bonding of dithizone. The H2Dz-SG quantitatively adsorb copper ions, and the retained copper is afterwards collected by elution of 10% (v/v) nitric acid. An on-line flow injection solid-phase extraction procedure was developed for trace copper separation and preconcentration with detection by flame atomic spectrometry. By loading 5.4 mL of sample solution, a liner range of 0.5-120 μg L−1, an enrichment factor of 42.6, a detection limit of 0.2 μg L−1 and a precision of 1.7% RSD at the 40 μg L−1 level (n = 11) were obtained, along with a sampling frequency of 47 h−1. The dynamic sorption capacity of H2Dz-SG to Cu2+ was 0.76 mg g−1. The accuracy of the proposed procedure was evaluated by determination of copper in reference water sample. The potential applications of the procedure for extraction of trace copper were successfully accomplished in water samples (tap, rain, snow, sea and river). The spiking recoveries within 91-107% are achieved.  相似文献   

20.
Guangmei Guo  Ping Yu 《Talanta》2009,79(3):570-575
TiO2- and Ag/TiO2-nanotubes (NTs) were synthesized by hydrothermal methods and microwave-assisted preparation, respectively. Scanning electron microscopy, high resolution transmission electron microscopy, Brunauer-Emmett-Teller particle surface area measurement and X-ray diffraction were used to characterize the nanotubes. Rutile TiO2-NTs with Na2Ti5O11 crystallinity had a length range of 200-400 nm and diameters of 10-20 nm. TiO2- and Ag/TiO2-NTs with a 0.4% deposition of Ag had high surface areas of 270 and 169 m2 g−1, respectively. The evaluation of photocatalytic activity showed that Ag/TiO2-NTs displayed higher photocatalytic activity than pure TiO2-NTs and a 60.91% degradation of Rhodamine-B with 0.8% deposition of Ag species. Also 60% of Rhodamine-6G was physisorbed and 40% chemisorbed on the surface of TiO2-NTs. In addition, the photocatalytic degradations of organochlorine pesticides taking α-hexachlorobenzene (BHC) and dicofol as typical examples, were compared using Ag/TiO2-NTs, and found that their degradations rates were all higher than those obtained from commercial TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号