首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper the authors address a pressurized water distribution network design problem for irrigation purposes. Two mixed binary nonlinear programming models are proposed for this NP-hard problem. Furthermore, a heuristic algorithm is presented for the problem, which considers a decomposition sequential scheme, based on linearization of the second model, coupled with constructive and local search procedures designed to achieve improved feasible solutions. To evaluate the robustness of the method we tested it on several instances generated from a real application. The best solutions obtained are finally compared with solutions provided by standard software. These computational experiments enable the authors to conclude that the decomposition sequential heuristic is a good approach to this difficult real problem.  相似文献   

2.
In this paper, we introduce the stop-and-drop problem (SDRP), a new variant of location-routing problems, that is mostly applicable to nonprofit food distribution networks. In these distribution problems, there is a central warehouse that contains food items to be delivered to agencies serving the people in need. The food is delivered by trucks to multiple sites in the service area and partner agencies travel to these sites to pick up their food. The tactical decision problem in this setting involves how to jointly select a set of delivery sites, assign agencies to these sites, and schedule routes for the delivery vehicles. The problem is modeled as an integrated mixed-integer program for which we delineate a two-phase sequential solution approach. We also propose two Benders decomposition-based solution procedures, namely a linear programming relaxation based Benders implementation and a logic-based Benders decomposition heuristic. We show through a set of realistic problem instances that given a fixed time limit, these decomposition based methods perform better than both the standard branch-and-bound solution and the two-phase approach. The general problem and the realistic instances used in the computational study are motivated by interactions with food banks in southeastern United States.  相似文献   

3.
We develop and investigate the performance of a hybrid solution framework for solving mixed-integer linear programming problems. Benders decomposition and a genetic algorithm are combined to develop a framework to compute feasible solutions. We decompose the problem into a master problem and a subproblem. A genetic algorithm along with a heuristic are used to obtain feasible solutions to the master problem, whereas the subproblem is solved to optimality using a linear programming solver. Over successive iterations the master problem is refined by adding cutting planes that are implied by the subproblem. We compare the performance of the approach against a standard Benders decomposition approach as well as against a stand-alone solver (Cplex) on MIPLIB test problems.  相似文献   

4.
The integrated vehicle-crew-roster problem with days-off pattern aims to simultaneously determine minimum cost vehicle and daily crew schedules that cover all timetabled trips and a minimum cost roster covering all daily crew duties according to a pre-defined days-off pattern. This problem is formulated as a new integer linear programming model and is solved by a heuristic approach based on Benders decomposition that iterates between the solution of an integrated vehicle-crew scheduling problem and the solution of a rostering problem. Computational experience with data from two bus companies in Portugal and data from benchmark vehicle scheduling instances shows the ability of the approach for producing a variety of solutions within reasonable computing times as well as the advantages of integrating the three problems.  相似文献   

5.
This paper focuses on solving two-stage stochastic mixed integer programs (SMIPs) with general mixed integer decision variables in both stages. We develop a decomposition algorithm in which the first-stage approximation is solved by a branch-and-bound algorithm with its nodes inheriting Benders’ cuts that are valid for their ancestor nodes. In addition, we develop two closely related convexification schemes which use multi-term disjunctive cuts to obtain approximations of the second-stage mixed-integer programs. We prove that the proposed methods are finitely convergent. One of the main advantages of our decomposition scheme is that we use a Benders-based branch-and-cut approach in which linear programming approximations are strengthened sequentially. Moreover as in many decomposition schemes, these subproblems can be solved in parallel. We also illustrate these algorithms using several variants of an SMIP example from the literature, as well as a new set of test problems, which we refer to as Stochastic Server Location and Sizing. Finally, we present our computational experience with previously known examples as well as the new collection of SMIP instances. Our experiments reveal that our algorithm is able to produce provably optimal solutions (within an hour of CPU time) even in instances for which a highly reliable commercial MIP solver is unable to provide an optimal solution within an hour of CPU time.  相似文献   

6.
The optimization of stochastic linear problems, via scenario analysis, based on Benders decomposition requires appending feasibility and/or optimality cuts to the master problem until the iterative procedure reaches the optimal solution. The cuts are identified by solving the auxiliary submodels attached to the scenarios. In this work, we propose the algorithm named scenario Cluster Benders Decomposition (CBD) for dealing with the feasibility cut identification in the Benders method for solving large-scale two-stage stochastic linear problems. The scenario tree is decomposed into a set of scenario clusters and tighter feasibility cuts are obtained by solving the auxiliary submodel for each cluster instead of each individual scenario. Then, the scenario cluster based scheme allows to identify tighter feasibility cuts that yield feasible second stage decisions in reasonable computing time. Some computational experience is reported by using CPLEX as the solver of choice for the auxiliary LP submodels at each iteration of the algorithm CBD. The results that are reported show the favorable performance of the new approach over the traditional single scenario based Benders decomposition; it also outperforms the plain use of CPLEX for medium-large and large size instances.  相似文献   

7.
This paper proposes an accelerated solution method to solve two-stage stochastic programming problems with binary variables in the first stage and continuous variables in the second stage. To develop the solution method, an accelerated sample average approximation approach is combined with an accelerated Benders’ decomposition algorithm. The accelerated sample average approximation approach improves the main structure of the original technique through the reduction in the number of mixed integer programming problems that need to be solved. Furthermore, the recently accelerated Benders’ decomposition approach is utilized to expedite the solution time of the mixed integer programming problems. In order to examine the performance of the proposed solution method, the computational experiments are performed on developed stochastic supply chain network design problems. The computational results show that the accelerated solution method solves these problems efficiently. The synergy of the two accelerated approaches improves the computational procedure by an average factor of over 42%, and over 12% in comparison with the original and the recently modified methods, respectively. Moreover, the betterment of the computational process increases substantially with the size of the problem.  相似文献   

8.
This paper proposes a comprehensive methodology for the stochastic multi-period two-echelon distribution network design problem (2E-DDP) where product flows to ship-to-points are directed from an upper layer of primary warehouses to distribution platforms (DPs) before being transported to the ship-to-points. A temporal hierarchy characterizes the design level dealing with DP location and capacity decisions, as well as the operational level involving transportation decisions as origin-destination flows. These design decisions must be calibrated to minimize the expected distribution cost associated with the two-echelon transportation schema on this network under stochastic demand. We consider a multi-period planning horizon where demand varies dynamically from one planning period to the next. Thus, the design of the two-echelon distribution network under uncertain customer demand gives rise to a complex multi-stage decisional problem. Given the strategic structure of the problem, we introduce alternative modeling approaches based on two-stage stochastic programming with recourse. We solve the resulting models using a Benders decomposition approach. The size of the scenario set is tuned using the sample average approximation (SAA) approach. Then, a scenario-based evaluation procedure is introduced to post-evaluate the design solutions obtained. We conduct extensive computational experiments based on several types of instances to validate the proposed models and assess the efficiency of the solution approaches. The evaluation of the quality of the stochastic solution underlines the impact of uncertainty in the two-echelon distribution network design problem (2E-DDP).  相似文献   

9.
A new algorithmic approach for solving the stochastic Steiner tree problem based on three procedures for computing lower bounds (dual ascent, Lagrangian relaxation, Benders decomposition) is introduced. Our method is derived from a new integer linear programming formulation, which is shown to be strongest among all known formulations. The resulting method, which relies on an interplay of the dual information retrieved from the respective dual procedures, computes upper and lower bounds and combines them with several rules for fixing variables in order to decrease the size of problem instances. The effectiveness of our method is compared in an extensive computational study with the state-of-the-art exact approach, which employs a Benders decomposition based on two-stage branch-and-cut, and a genetic algorithm introduced during the DIMACS implementation challenge on Steiner trees. Our results indicate that the presented method significantly outperforms existing ones, both on benchmark instances from literature, as well as on large-scale telecommunication networks.  相似文献   

10.
The mean value cross decomposition method for linear programming problems is a modification of ordinary cross decomposition, that eliminates the need for using the Benders or Dantzig-Wolfe master problems. As input to the dual subproblem the average of a part of all known dual solutions of the primal subproblem is used, and as input to the primal subproblem the average of a part of all known primal solutions of the dual subproblem. In this paper we study the lower bounds on the optimal objective function value of (linear) pure integer programming problems obtainable by the application of mean value cross decomposition, and find that this approach can be used to get lower bounds ranging from the bound obtained by the LP-relaxation to the bound obtained by the Lagrangean dual. We examplify by applying the technique to the clustering problem and give some preliminary computational results.  相似文献   

11.
In this paper we present a heuristic method to generate constrained two-dimensional guillotine cutting patterns. This problem appears in different industrial processes of cutting rectangular plates to produce ordered items, such as in the glass, furniture and circuit board business. The method uses a state space relaxation of a dynamic programming formulation of the problem and a state space ascent procedure of subgradient optimization type. We propose the combination of this existing approach with an and/or-graph search and an inner heuristic that turns infeasible solutions provided in each step of the ascent procedure into feasible solutions. Results for benchmark and randomly generated instances indicate that the method’s performance is competitive compared to other methods proposed in the literature. One of its advantages is that it often produces a relatively tight upper bound to the optimal value. Moreover, in most cases for which an optimal solution is obtained, it also provides a certificate of optimality.  相似文献   

12.
The vast size of real world stochastic programming instances requires sampling to make them practically solvable. In this paper we extend the understanding of how sampling affects the solution quality of multistage stochastic programming problems. We present a new heuristic for determining good feasible solutions for a multistage decision problem. For power and log-utility functions we address the question of how tree structures, number of stages, number of outcomes and number of assets affect the solution quality. We also present a new method for evaluating the quality of first stage decisions.  相似文献   

13.
The feature selection problem aims to choose a subset of a given set of features that best represents the whole in a particular aspect, preserving the original semantics of the variables on the given samples and classes. In 2004, a new approach to perform feature selection was proposed. It was based on a NP-complete combinatorial optimisation problem called (\(\alpha ,\beta \))-k-feature set problem. Although effective for many practical cases, which made the approach an important feature selection tool, the only existing solution method, proposed on the original paper, was found not to work well for several instances. Our work aims to cover this gap found on the literature, quickly obtaining high quality solutions for the instances that existing approach can not solve. This work proposes a heuristic based on the greedy randomised adaptive search procedure and tabu search to address this problem; and benchmark instances to evaluate its performance. The computational results show that our method can obtain high quality solutions for both real and the proposed artificial instances and requires only a fraction of the computational resources required by the state of the art exact and heuristic approaches which use mixed integer programming models.  相似文献   

14.
The limited success of exact methods for solving integer programming problems has prompted the development of heuristic procedures which have performed surprisingly well in their search for near-optimal solutions. The present paper constitutes an attempt to generalize these procedures to the mixed integer case. The approach is based on the utilization of the Benders partitioning method (BPM) which separates the integer from the continuous variables. A number of alternatives are presented for integrating IP heuristics in the BPM thus alleviating its main limitation: the necessity of solving a sequence of integer master problems. The rationale and its usefulness are illustrated on large-scale applications from the fields of power systems and network flows.  相似文献   

15.
In this paper, we present a multicut version of the Benders decomposition method for solving two-stage stochastic linear programming problems, including stochastic mixed-integer programs with only continuous recourse (two-stage) variables. The main idea is to add one cut per realization of uncertainty to the master problem in each iteration, that is, as many Benders cuts as the number of scenarios added to the master problem in each iteration. Two examples are presented to illustrate the application of the proposed algorithm. One involves production-transportation planning under demand uncertainty, and the other one involves multiperiod planning of global, multiproduct chemical supply chains under demand and freight rate uncertainty. Computational studies show that while both the standard and the multicut versions of the Benders decomposition method can solve large-scale stochastic programming problems with reasonable computational effort, significant savings in CPU time can be achieved by using the proposed multicut algorithm.  相似文献   

16.
This paper presents a hybrid of a general heuristic framework and a general purpose mixed-integer programming (MIP) solver. The framework is based on local search and an adaptive procedure which chooses between a set of large neighborhoods to be searched. A mixed integer programming solver and its built-in feasibility heuristics is used to search a neighborhood for improving solutions. The general reoptimization approach used for repairing solutions is specifically suited for combinatorial problems where it may be hard to otherwise design suitable repair neighborhoods. The hybrid heuristic framework is applied to the multi-item capacitated lot sizing problem with setup times, where experiments have been conducted on a series of instances from the literature and a newly generated extension of these. On average the presented heuristic outperforms the best heuristics from the literature, and the upper bounds found by the commercial MIP solver ILOG CPLEX using state-of-the-art MIP formulations. Furthermore, we improve the best known solutions on 60 out of 100 and improve the lower bound on all 100 instances from the literature.  相似文献   

17.
The blocks relocation problem (BRP) may be defined as follows: given a set of homogeneous blocks stored in a two-dimensional stock, which relocations are necessary to retrieve the blocks from the stock in a predefined order while minimizing the number of those relocations? In this paper, we first prove NP-hardness of the BRP as well as a special case, closing open research questions. Moreover, we propose different solution approaches. First, a mathematical model is presented that provides optimal solutions to the general BRP in cases where instances are small. To overcome such limitation, some realistic assumption taken from the literature is introduced, leading to the definition of a binary linear programming model. In terms of computational time, this approach is reasonably fast to be used to solve medium-sized instances. In addition, we propose a simple heuristic based upon a set of relocation rules. This heuristic is used to generate “good” quality solutions for larger instances in very short computational time, and, consequently, is proposed for tackling problem instances where solutions are required (almost) immediately. Solution quality of the heuristic is measured against optimal solutions obtained using a state-of-the-art commercial solver and both of them are compared with reference results from literature.  相似文献   

18.
In this paper we propose a general variable neighborhood search heuristic for solving the uncapacitated single allocation p-hub center problem (USApHCP). For the local search step we develop a nested variable neighborhood descent strategy. The proposed approach is tested on benchmark instances from the literature and found to outperform the state-of-the-art heuristic based on ant colony optimization. We also test our heuristic on large scale instances that were not previously considered as test instances for the USApHCP. Moreover, exact solutions were reached by our GVNS for all instances where optimal solutions are known.  相似文献   

19.
We describe models and exact solutions approaches for an integrated aircraft fleeting and routing problem arising at TunisAir. Given a schedule of flights to be flown, the problem consists of determining a minimum cost route assignment for each aircraft so as to cover each flight by exactly one aircraft while satisfying maintenance activity constraints. We investigate two tailored approaches for this problem: Benders decomposition and branch-and-price. Computational experiments conducted on real-data provide evidence that the branch-and-price approach outperforms the Benders decomposition approach and delivers optimal solutions within moderate CPU times. On the other hand, the Benders algorithm yields very quickly high quality near-optimal solutions.  相似文献   

20.
A heuristic framework for turbine layout optimization in a wind farm is proposed that combines ad-hoc heuristics and mixed-integer linear programming. In our framework, large-scale mixed-integer programming models are used to iteratively refine the current best solution according to the recently-proposed proximity search paradigm. Computational results on very large scale instances involving up to 20,000 potential turbine sites prove the practical viability of the overall approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号