首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A new type of covalent bulk modified glassy carbon composite electrode has been fabricated and utilized in the simultaneous determination of lead and cadmium ions in aqueous medium. The covalent bulk modification was achieved by the chemical reduction of 2-hydroxybenzoic acid diazonium tetrafluroborate in the presence of hypophosphorous acid as a chemical reducing agent. The covalent attachment of the modifier molecule was examined by studying Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the surface morphology was examined by scanning electron microscopy images. The electrochemistry of modified glassy carbon spheres was studied by its cyclic voltammetry to decipher the complexing ability of the modifier molecules towards Pb2+ and Cd2+ ions. The developed sensor showed a linear response in the concentration range 1–10 μM with a detection limit of 0.18 and 0.20 μM for lead and cadmium, respectively. The applicability of the proposed sensor has been checked by measuring the lead and cadmium levels quantitatively from sewage water and battery effluent samples.  相似文献   

2.
Amino-calixarene-derivatized graphitic carbon electrode has been used in the simultaneous quantification of lead and cadmium ions at picomolar level. The graphitic carbon has been chemically modified using amino-calixarene as an indicator molecule through microwave irradiation, and it has been characterized by NMR, mass, and Fourier transform infrared spectroscopy (FTIR) techniques. The proposed sensor has shown linearity in the concentration range 10–120 pM with detection limits of 3.3 and 3.5 pM for lead and cadmium, respectively. The proposed sensor has been successfully applied to quantify lead and cadmium levels in battery effluents, alloy materials, and sewage water sample matrices. The results obtained by the proposed sensor are in agreement with the results of the standard protocols.  相似文献   

3.
A new sensor has been developed for the simultaneous detection of cadmium, lead, copper and mercury, using differential pulse and square wave anodic stripping voltammetry (DPASV and SWASV) at a graphite–polyurethane composite electrode with SBA‐15 silica organofunctionalized with 2‐benzothiazolethiol as bulk modifier. The heavy metal ions were preconcentrated on the surface of the modified electrode at ?1.1 V vs. SCE where they complex with 2‐benzothiazolethiol and are reduced to the metals, and are then reoxidized. Optimum SWASV conditions lead to nanomolar detection limits and simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ in natural waters was achieved.  相似文献   

4.
A graphite–polyurethane composite electrode with Santa Barbara Amorphous 15, SBA-15, mesoporous silica organofunctionalized with 2-benzothiazolethiol (BTSBA) as bulk modifier has been characterized electrochemically by voltammetry and electrochemical impedance spectroscopy (EIS) in the presence of cadmium ions, as an example of a toxic trace heavy metal, as well as by solid-state 13C-NMR and by scanning electron microscopy. EIS measurements performed on the modified composite electrodes to investigate the influence of BTSBA on the deposition of cadmium during square wave anodic stripping voltammetry showed that organofunctionalization of the SBA-15 bulk modifier in the composite electrode facilitates heavy metal deposition. Experiments were also carried out with a mixture of submicromolar cadmium, lead, copper and mercury ions and led to similar conclusions.  相似文献   

5.
A simple strategy has been proposed to quantify Zn2+ ions using CeO2 nanoparticle-modified glassy carbon electrode. The CeO2 nanoparticles were prepared by sucrose-nitrate decomposition method, and it was characterized by X-ray diffraction (XRD), FT-IR, TEM, and surface area analyzer. The synthesized CeO2 nanoparticles were used as modifier molecules as a thin film on glassy carbon electrode (GCE) in the trace level quantification of Zn2+ by using cyclic voltammetry (CV) and differential pulse anodic stripping voltammetry (DPASV) techniques. The fabricated sensor exhibited a good analytical response towards Zn2+ ions. The modified electrode showed a wide linearity in the concentration range 20–380 μg L?1 with a limit of detection 0.36 μg L?1. The proposed electrochemical sensor was successfully applied to trace level Zn2+ quantification from real sample matrices.  相似文献   

6.
A high‐sensitivity sensing platform for lead(II) and cadmium(II) based on the bismuth modified carbon nanotubes (CNTs)‐poly(sodium 4‐styrenesulfonate) composite film electrode (CNTs‐PSS/Bi) was fabricated. The composite film CNTs‐PSS/Bi provided remarkably improved sensitivity and reproducibility compared with previously reported CNTs‐modified electrodes. The detection limits were estimated to be 0.04 ppb for lead(II) and 0.02 ppb for cadmium(II) with a preconcentration time of 120 s, respectively. The linear responses of Cd2+ and Pb2+ were over the ranges of 0.5–50 ppb and 0.5–90 ppb, respectively. Finally, the practical application of the proposed method was verified in the real water sample with satisfactory results.  相似文献   

7.
A new sensor was developed for simultaneous detection of cadmium (Cd2+), copper (Cu2+), and lead (Pb2+), based on the voltammetric response at a carbon paste electrode modified with carbamoylphosphonic acid (acetamide phosphonic acid) self-assembled monolayer (SAM) on mesoporous silica (Ac-Phos SAMMS). The adsorptive stripping voltammetry (AdSV) technique involves preconcentration of the metal ions onto Ac-Phos SAMMS under an open circuit, then electrolysis of the preconcentrated species, followed by a square wave potential sweep towards positive values. Factors affecting the preconcentration process were investigated. The voltammetric responses increased linearly with the preconcentration time from 1 to 30 min or with metal ion concentrations ranging from 10 to 200 ppb. The responses also evolved in the same fashion as adsorption isotherm in the pH range of 2-6. The metal detection limits were 10 ppb after 2 min preconcentration and improved to 0.5 ppb after 20 min preconcentration.  相似文献   

8.
An organic-inorganic hybrid poly-o-toluidine Th(IV) phosphate was chemically synthesized by mixing ortho-tolidine into the gel of Th(IV) phosphate in different mixing volume ratios, concentration of inorganic reactant with a fixed mixing volume ratios of organic polymer. The physico-chemical characterization was carried out by elemental analysis, TEM, SEM, XRD, FTIR and simultaneous TGA-DTA studies. The ion-exchange capacity, chemical stability, effect of eluant concentration, elution behavior and pH titration studies were also carried out to understand the ion-exchange capabilities. The distribution studies revealed that the cation-exchange material is highly selective for Hg2+, which is an important environmental pollutant. Due to selective nature of the cation-exchanger ion-selective membrane electrode was fabricated for the determination of Hg(II) ions in solutions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations.  相似文献   

9.
《Analytical letters》2012,45(10):1746-1757
Bifunctional combination of carbon nanotubes and ionophore is introduced for anodic stripping analysis of lead (Pb2+). Carbon nanotubes are employed to improve the detection sensitivity due to their excellent electrical conductivity and strong adsorption ability. An ionophore is utilized for its excellent selectivity toward Pb2+. The proposed carbon nanotubes/ionophore modified electrode shows improved sensitivity and selectivity for Pb2+. Low detection limit (1 nM), wide linear range (5 nM–8 µM) and excellent selectivity over other metal ions (Cd2+, Cu2+, and Hg2+) was obtained. The practical application has been carried out for determination of Pb2+ in real water samples.  相似文献   

10.
Herein, a simple electrochemical sensor was fabricated for sensing Hg2+ ions by using electrochemically reduced p‐nitrobenzoic acid molecules modified (ERpNBA) glassy carbon electrode (GCE). The modified electrode was applied for the determination of Hg2+ ions by using differential pulse anodic stripping voltammetry (DPASV). Experimental parameters such as concentration of p‐nitrobenzoic acid used for electrode modification, pH, accumulation time and deposition potential used for the determination of Hg2+ ions were optimized. The strong interaction between the Hg2+ ions and the lone pair of electrons on the nitrogen atoms of ERpNBA molecules leads to highly selective adsorption of Hg2+ ions on the modified electrode. Under the optimum experimental conditions, the sensor showed higher sensitivity and very low detection limit for Hg2+ ions than other metal ions such as Cd2+, Pb2+ and Zn2+ ions. The LOD for Hg2+ ions was 240 pM which is below the guideline value given by the World Health Organization and the earlier reports.  相似文献   

11.
A novel ionophore–Nafion modified bismuth electrode is described for sensitive and selective anodic stripping analysis of cadmium(II). The electrode is prepared by coating the glassy carbon electrode with the cadmium ionophore N,N,N′,N′-tetrabutyl-3,6-dioxaoctanedi(thioamide) and Nafion composite. Bismuth is deposited in situ on the electrode surface by plating simultaneously with cadmium in sample solution. Numerous key variables affecting the current response of cadmium have been optimized. The electrode has a linear concentration range of 0.5–10 nM with a deposition time of 180 s. The detection limit is 1.3 × 10?10 M and the relative standard deviations for 0.5 and 7 nM cadmium are 6.5% and 4.5%, respectively. The proposed electrode shows excellent selectivity over other heavy metals, such as copper, lead and indium. The attractive performance of such electrode offers a feasible way to monitor trace cadmium(II) rapidly and precisely in complex matrixes.  相似文献   

12.
《Analytical letters》2012,45(4):395-407
A screen-printed electrode sensor has been fabricated by modifying the carbon ink surface with different brands of multiwall carbon nanotubes (MWCNTs) and bismuth film (BiF) for the determination of traces of lead, cadmium and zinc ions by square wave anodic stripping voltammetry. The MWCNTs, from three different sources, were functionalized and dispersed in Nafion (MWCNT-Nafion) solution and placed on screen printed electrodes (MWCNT-Nafion/SPE); bismuth films were then prepared by ex-situ plating of bismuth onto the MWCNT-Nafion/SPE electrodes. The electrochemical characteristics of BiF/MWCNT-Nafion/SPE/ were examined by electrochemical impedance spectroscopy and showed differences; the charge transfer resistance tends to decrease with negative applied potentials. After optimizing the experimental conditions, the square-wave peak current signal is linear in the nmol L?1 range. The lowest limit of detection found for the separate determination of lead, cadmium and zinc were 0.7 nmol L?1, 1.5 nmol L?1, and 11.1 nmol L?1, respectively, with a 120 s deposition time.  相似文献   

13.
A new chemically modified carbon paste electrode was constructed and used for rapid, simple, accurate, selective and highly sensitive simultaneous determination of cadmium, copper and mercury using square wave anodic stripping voltammetry (SWASV). The carbon paste electrode was modified by N,N′-bis(3-(2-thenylidenimino)propyl)piperazine coated silica nanoparticles. Compared with carbon paste electrode, the stripping peak currents had a significant increase at the modified electrode. Under the optimized conditions (deposition potential, −1.100 V vs. Ag/AgCl; deposition time, 60 s; resting time, 10 s; SW frequency, 25 Hz; pulse amplitude, 0.15 V; dc voltage step height, 4.4 mV), the detection limit was 0.3, 0.1 and 0.05 ng mL−1 for the determination of Cd2+, Cu2+ and Hg2+, respectively. The complexation reaction of the ligand with several metal cations in methanol was studied and the stability constants of the complexes were obtained. The effects of different cations and anions on the simultaneous determination of metal ions were studied and it was found that the electrode is highly selective for the simultaneous determination of Cd2+, Cu2+ and Hg2+. Furthermore, the present method was applied to the determination of Cd2+, Cu2+ and Hg2+ in water and some foodstuff samples.  相似文献   

14.
4,13-Didecyl-1,7,10,16-tetraoxa-4,13-diazacyclooctadecane (kryptofix22DD) has been explored as a neutral ionophore for preparing polyvinyl chloride (PVC)-based membrane sensor selective to lead(II). The optimized membrane incorporating kryptofix22DD as the active material, nitrobenzene as plasticizer and sodium tetraphenylborate as an anion excluder and membrane modifier in PVC (in the weight ratio of 5.0: 63.0: 2.0: 30.0, respectively) was directly coated on the surface of graphite rod. The sensor exhibits a Nernstian slope (29.4 mV/decade) in the concentration range of 1.0 × 10–5 to 1.0 × 10–1 M Pb2+. The detection limit of the sensor is 6.5 × 10–6 M. The proposed sensor has a fast response time (~10 s), a satisfactory reproducibility and relatively long lifetime. The electrode shows high selectivity toward Pb2+ ion in comparison to other common cations. The proposed sensor is suitable for use in aqueous solutions in a wide pH range of 2.0–10.0. It was used as an indicator electrode for the end point detection in the potentiometric titration of Pb2+ ion with ethylenediaminetetraacetic acid (EDTA) and sodium iodide (NaI) solutions. The proposed sensor was successfully applied for the recovery of Pb2+ ions spiked in real water samples.  相似文献   

15.
The potential of modified multiwalled carbon nanotubes (a solid-phase extraction sorbent), for the simultaneous separation and preconcentration of lead, cadmium and nickel; has been investigated. Lead, cadmium and nickel, were adsorbed quantitatively; on modified multiwalled carbon nanotubes (in the pH range of 2–4). Parameters influencing, the simultaneous preconcentration of Pb(II), Ni(II) and Cd(II) ions (such as pH of the sample, sample and eluent flow rate, type and volume of elution solution and interfering ions), have been examined and optimized. Under the optimum experimental conditions, the detection limits of this method. for Pb(II), Ni(II) and Cd(II) ions, were 0.32, 0.17 and 0.04 ng mL−1 in original solution, respectively. Seven replicate determinations, of a mixture of 2.0 μg mL−1 lead and nickel, and 1.0 μg mL−1 cadmium; gave a mean absorbance of 0.074, 0.151 and 0.310, with relative standard deviation 1.7%, 1.5% and 1.2%, respectively. The method has been applied, to the determination of trace amounts of lead, cadmium and nickel; in biological and water samples, with satisfactory results.   相似文献   

16.
The fabrication and evaluation of a glassy carbon electrode (GCE) modified with ordered mesoporous carbon (OMC), 2‐mercaptoethanesulfonate (MES)‐tethered polyaniline (PANI) and bismuth for simultaneous determination of trace Cd2+ and Pb2+ by differential pulse anodic stripping voltammetry (DPASV) are presented here. The morphology and electrochemical properties of the fabricated electrode were respectively characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Experimental parameters such as PANI disposition, preconcentration potential, preconcentration time and bismuth concentration were optimized. Under optimum conditions, the fabricated electrode exhibited linear calibration curves ranged from 1 to 120 nM for Cd2+ and Pb2+. The limits of detection (LOD) were 0.26 nM for Cd2+ and 0.16 nM for Pb2+ (S/N=3), respectively. Additionally, repeatability, reproducibility, interference and application were also investigated, and the proposed electrode exhibited excellent performance. The proposed method could be extended for the development of other new sensors for heavy metal determination.  相似文献   

17.
《Electroanalysis》2003,15(17):1369-1376
Silver‐gold alloy electrodes have been studied for the purpose of the quantitative determination of heavy metals by subtractive anodic stripping voltammetry, (SASV). The results have been compared with those obtained with the silver and gold electrodes. The 50/50 a/o Ag/Au alloy electrode is the most suitable for quantifying thallium in the presence of lead and cadmium. The separation of its peak from those of lead and cadmium is 200 mV, which is about twice the separation obtained on the pure metal electrodes and is also better than on mercury. The silver electrode is suitable for the simultaneous determination of thallium, lead and cadmium. The peaks of lead and cadmium overlap on the 50/50 alloy. Pure silver or pure gold can be used for simultaneous quantification of these two metals. The use of gold for quantifying lead and cadmium is more limited because the peak potential of cadmium is shifted in the negative direction as its concentration increases and at [Cd2+]>200 nM, the two peaks merge. SASV enables correction for background currents and is of utmost importance for obtaining well‐defined peaks. The peaks of lead, cadmium and thallium appear over a relatively narrow potential range (ca. 200 mV) on all the electrodes presented in this work. For this reason, the quantifying of a peak is based on the derivative at the inflection point of only one of its branches (ascending or descending). All SASV measurements were carried out without removal of oxygen.  相似文献   

18.
A new thiomorpholine-functionalized nanoporous mesopore Mobil Composition of Matter No. 41 (MCM-41), abbreviated as TMMCM-41, was synthesized and applied as a sensing material in construction of a cadmium carbon paste electrode. The electrode composition of 20.1%wt TMMCM-41, 54.0% graphite powder, 25.9% paraffin oil showed the stable potential response to Cd2+ ions with the Nernstian slope of 28.6 mV decade?1 (±1.8 mV decade?1) over a wide linear concentration range of 10?6 to 10?2?mol L?1 with a detection limit of 6?×?10?7 mol L?1. The electrode has fast response time and long-term stability (more than 4 months). The proposed electrode was used to determine the concentration of cadmium in tap water contaminated by this metal and cadmium electroplating waste water samples.  相似文献   

19.
Yasri NG  Halabi AJ  Istamboulie G  Noguer T 《Talanta》2011,85(5):2528-2533
A new simple chronoamperometry methodology was developed for the ultrasensitive determination of lead ions using a PEDOT:PSS coated graphite carbon electrode. The polymer was directly coated on a graphite carbon electrode and characterized using simple cycle voltammetric measurements. The presence of lead ions induced a cathodic peak starting at −550 ± 10 mV vs. Ag/AgCl, and an anodic peak starting at −360 ± 10 mV vs. Ag/AgCl. Electroaccumulation of lead ions onto the PEDOT:PSS modified electrode was performed at −650 mV vs. Ag/AgCl for 30 s in a pH 2.2 hydrochloric acid solution. Chronoamperometry measurements were carried out at −350 mV vs. Ag/AgCl allowing the oxidation of accumulated lead. Using this method, lead ions were detected for concentrations ranging between 2.0 nmol L−1 and 0.1 μmol L−1 (R2 = 0.999). The detection limit was calculated to be 0.19 nmol L−1 and the quantification limit of 0.63 nmol L−1. The method was shown to be highly precise and sensitive, negligible interference was detected from other metal ions. The proposed method was successfully applied for the detection of lead ions in vegetables.  相似文献   

20.
A new chemically modified carbon paste electrode by 2,2?-((pyridine-2,6-diylbis(azanylylidene))bis(methanylylidene))diphenol (L) ligand has been made and used as a sensor for determination of trace mercury and cadmium ions with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. Complexation studies of the ligand with Cu2+, Zn2+, Hg2+, Ni2+ and Cd2+ ions by conductometric method in acetonitrile–ethanol mixture at 25°C show that the ML complexes have formed. The formation constants of complexes were calculated from the computer fitting of the molar conductance–mole ratio data, and the stability of the resulting complexes varied in order of Cd2+ > Hg2+ > Cu2+ > Zn2+ > Ni2+. Then a simple and effective chemically modified carbon paste electrode with L was prepared, and the electrochemical properties and applications of the modified electrode were investigated. Under the optimal conditions, the detection limit was 0.0494 μg L?1 and 0.0782 μg L?1 for cadmium and mercury ions, respectively, and the linear range for both metal ions were from 1 to 100 μg L?1. The electrode shows high sensitivity, reproducibility and low cost, and was successfully applied to determination of Cd2+ and Hg2+ ions in water samples with recovery in the range of 97–101%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号