首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palraj Kalimuthu 《Talanta》2010,80(5):1686-319
This paper describes the simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and xanthine (XN) using an ultrathin electropolymerized film of 2-amino-1,3,4-thiadiazole (p-ATD) modified glassy carbon (GC) electrode in 0.20 M phosphate buffer solution (pH 5.0). Bare GC electrode failed to resolve the voltammetric signals of AA, DA, UA and XN in a mixture. On the other hand, the p-ATD modified electrode separated the voltammetric signals of AA, DA, UA and XN with potential differences of 110, 152 and 392 mV between AA-DA, DA-UA and UA-XN, respectively and also enhanced their oxidation peak currents. The modified electrode could sense 5 μM DA and 10 μM each UA and XN even in the presence of 200 μM AA. The oxidation currents were increased from 30 to 300 μM for AA, 5 to 50 μM for DA and 10 to 100 μM for each UA and XN, and the lowest detection limit was found to be 2.01, 0.33, 0.19 and 0.59 μM for AA, DA, UA and XN, respectively (S/N = 3). The practical application of the present modified electrode was demonstrated by the determination of AA, UA and XN in human urine samples.  相似文献   

2.
A new type of tryptophan-functionalized graphene nanocomposite (Trp-GR) was synthesized by utilizing a facile ultrasonic method via ππ conjugate action between graphene (GR) and tryptophan (Trp) molecule. The material as prepared had well dispersivity in water and better conductivity than pure GR. The surface morphology of Trp-GR was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The electrochemical behaviors of ascorbic acid (AA), dopamine (DA), and uric acid (UA) were investigated by cyclic voltammetry (CV) on the surface of Trp-GR. The separation of the oxidation peak potentials for AA–DA, DA–UA and UA–AA was about 182 mV, 125 mV and 307 mV, which allowed simultaneously determining AA, DA, and UA. Differential pulse voltammetery (DPV) was used for the determination of AA, DA, and UA in their mixture. Under optimum conditions, the linear response ranges for the determination of AA, DA, and UA were 0.2–12.9 mM, 0.5–110 μM, and 10–1000 μM, with the detection limits (S/N = 3) of 10.09 μM, 0.29 μM and 1.24 μM, respectively. Furthermore, the modified electrode was investigated for real sample analysis.  相似文献   

3.
A simple and reliable method for simultaneous electrochemical determination of ascorbic acid (AA) and dopamine (DA) is presented in this work. It was based on the use of the cationic surfactant cetylpyridinium chloride (CPC) that enables the separation of the oxidation peaks potential of AA and DA. Cyclic voltammetry (CV) as well as pulse differential voltammetry (PDV) were used in order to verify the voltammetric behaviour in micellar media. In the cationic surfactant CPC, a remarkable electrostatic interaction is established with negatively charged AA, as a consequence, the oxidation peak potential shifted toward less positive potential and the peak current increased. On the other hand, the positively charged DA is repelled from the electrode surface and the oxidation peak potential shifts toward more positive potential in comparison to the bare electrode. Therefore, the common overlapped oxidation peaks of AA and DA can be circumventing by using CPC. Parameter that affects the Epa and Ipa such as CPC concentration and pH were studied. Under optimised conditions, the method presented a linear response to AA and DA in the concentration range from 5 to 75 μmol L−1 and 10 to 100 μmol L−1, respectively. The proposed method was successfully applied to the simultaneous determination of AA and DA in dopamine hydrochloride injection (DHI) samples spiked with AA.  相似文献   

4.
The present work reports a quercetin-modified wax-impregnated graphite electrode (Qu/WGE) prepared through an electrochemical oxidation procedure in quercetin-containing phosphate buffer solution (PBS), for the purpose of detecting uric acid (UA) in the presence of ascorbic acid (AA). During modification quercetin was oxidized to the corresponding quinonic structure, and in the blank buffer solution the electrodeposited film exhibits a voltammetric response anticipated for the surface-immobilized quercetin. Retarding effect of the film towards the reaction of anionic species was found; therefore the pH of sample solutions was selected to ensure the analyte in molecular form. At suitable pHs the Qu/WGE shows excellent electrocatalytic effect towards the oxidation of both AA and UA, and separates the voltammetric signal of UA from AA by about 280 mV, allowing simultaneous detection of these two species. A linear relation between the peak current and concentration was obtained for UA in the range of 1-50 μM in the presence of 0.5 mM AA, with a detection limit 1.0 μM (S/N = 3). This sensor was stable, reproducible and outstanding for long-term use.  相似文献   

5.
In the present work, a tube-like structure of graphene hybrid as modifier to fabricate electrode for simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp) was reported. The hybrid was synthesized by a simple method based on graphene sheets (GS) and 3,4,9,10-perylenetetracarboxylic acid (PTCA) via π–π stacking interaction under ultrasonic condition. The combination of GS and PTCA could effectively improve the dispersion of GS, owing to PTCA with the carboxylic-functionalized interface. Comparing with pure GS or PTCA modified electrode, GS–PTCA displayed high catalytic activity and selectivity toward the oxidation of AA, DA, UA, and Trp. Moreover, cyclic voltammetry, different pulse voltammetry and scanning electron microscopy were employed to characterize the sensors. The experiment results showed that the linear response range for simultaneous detection of AA, DA, UA, and Trp were 20–420 μM, 0.40–374 μM, 4–544 μM and 0.40–138 μM, respectively, and the detection limits were 5.60 μM, 0.13 μM, 0.92 μM and 0.06 μM (S/N = 3). Importantly, the proposed method offers promise for simple, rapid, selective and cost-effective analysis of small biomolecules.  相似文献   

6.
Thiagarajan S  Chen SM 《Talanta》2007,74(2):212-222
A novel biosensor was fabricated by electrochemical deposition of platinum and gold nanoparticles (nanoAu) with l-Cysteine on glassy carbon electrode. It was found that the nanoAu particle size distribution range was (50-80 nm), and the platinum particle size range was (200-300 nm). The hybrid film could be produced on gold and transparent indium tin oxide electrodes for different kind of studies such as electrochemical quartz crystal microbalance (EQCM), scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) and electrochemical studies. The PtAu hybrid film was applied to the electro catalytic oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) at pH 4.0 using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The modified electrode was quite effective not only to detect DA, AA and UA individually but also in simultaneous determination of these species in a mixture. The overlapping anodic peaks of DA, AA and UA were resolved into three well-defined voltammetric peaks in CV and DPV. The catalytic peak currents obtained from CV and DPV increased linearly with concentration. The relative standard deviation (% R.S.D., n = 10) for AA, DA and UA were less than 2.0% and DA, AA and UA can be determined in the ranges of 0.103-1.65, 0.024-0.384 and 0.021-0.336 mM, respectively. In addition, the modified electrode also shows good sensitivity, and stability. Satisfactory results were achieved for the determination of DA, AA and UA in dopamine injection solution, vitamin C tablets and human urine samples.  相似文献   

7.
Nanocrystalline graphite-like pyrolytic carbon film (PCF) electrode fabricated by a non-catalytic chemical vapor deposition (CVD) process was used for the simultaneous electrochemical sensing of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrode was studied with respect to changes in electrocatalytic activity caused by a simple and fast electrochemical pretreatment. The anodized electrode exhibited excellent performance compared to many chemically modified electrodes in terms of detection limit, linear dynamic range, and sensitivity. Differential pulse voltammetry (DPV) was used for the simultaneous determination of ternary mixtures of DA, AA, and UA. Under optimum conditions, the detection limits were 2.9 μM for AA, 0.04 μM for DA, and 0.03 μM for UA with sensitivities of 0.078, 5.345, and 6.192 A M−1, respectively. The peak separation was 219 mV between AA and DA and 150 mV between DA and UA. No electrode fouling was observed and good reproducibility was obtained in all the experiments. The sensor was successfully applied for the assay of DA in an injectable drug and UA in human urine by using standard addition method.  相似文献   

8.
The present study reports the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in 0.20 M phosphate buffer solution (pH 5.0) using electropolymerized ultrathin film of 5-amino-2-mercapto-1,3,4-thiadiazole (AMT) on glassy carbon (GC) electrode. The bare GC electrode does not separate the voltammetric signals of AA, DA and UA. However, electropolymerized AMT (p-AMT) modified GC electrode not only resolved the voltammetric signals of AA, DA and UA but also dramatically enhanced their oxidation peak currents when compared to bare GC electrode. The enhanced oxidation currents for AA, DA and UA at p-AMT modified electrode are due to the electrostatic interactions between them and the polymer film. Using amperometric method, we achieved the lowest detection of 75 nM AA, 40 nM DA and 60 nM UA at p-AMT modified electrode. The amperometric current was linearly increased from 200 nM to 0.80 mM for each AA, DA and UA and the lowest detection limit was found to be 0.92, 0.07 and 0.57 nM, respectively (S/N = 3). The practical application of the modified electrode was demonstrated by the determination of DA in dopamine hydrochloride injection.  相似文献   

9.
Zhao Y  Gao Y  Zhan D  Liu H  Zhao Q  Kou Y  Shao Y  Li M  Zhuang Q  Zhu Z 《Talanta》2005,66(1):51-57
The electrochemistry of dopamine (DA) was studied by cyclic voltammetry at a glassy carbon electrode modified by a gel containing multi-walled carbon nanotubes (MWNTs) and room-temperature ionic liquid of 1-octyl-3-methylimidazolium hexafluorophosphate (OMIMPF6). The thickness of gel on the surface of the electrode has to be controlled carefully because the charging currents increase with the modified layer being thicker. The anodic peaks of DA, ascorbic acid (AA) and uric acid (UA) in their mixture can be well separated since the peak potential of AA is shifted to more negative values, while that of UA is shifted to more positive values due to the modified electrode. At pH 7.08 the three peaks are separated ca. 0.20 and 0.15 V, respectively; hence DA can be determined in the presence of UA and more than 100 times excess of AA. Under optimum conditions linear calibration graphs were obtained over the DA concentration range 1.0 × 10−6 to 1.0 × 10−4 M. The detection limit of the current technique was found to be 1.0 × 10−7 M based on the signal-to-noise ratio of 3. The modified electrode has been successfully applied for the assay of DA in human blood serum. This work provides a simple and easy approach to selectively detect dopamine in the presence of ascorbic acid and uric acid.  相似文献   

10.
A novel electrode was developed through electrodepositing gold nanoparticles (GNPs) on overoxidized-polyimidazole (PImox) film modified glassy carbon electrode (GCE). The combination of GNPs and the PImox film endowed the GNPs/PImox/GCE with good biological compatibility, high selectivity and sensitivity and excellent electrochemical catalytic activities towards ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp). In the fourfold co-existence system, the peak separations between AA–DA, DA–UA and UA–Trp were large up to 186, 165 and 285 mV, respectively. The calibration curves for AA, DA and UA were obtained in the range of 210.0–1010.0 μM, 5.0–268.0 μM and 6.0–486.0 μM with detection limits (S/N = 3) of 2.0 μM, 0.08 μM and 0.5 μM, respectively. Two linear calibrations for Trp were obtained over ranges of 3.0–34.0 μM and 84.0–464.0 μM with detection limit (S/N = 3) of 0.7 μM. In addition, the modified electrode was applied to detect AA, DA, UA and Trp in samples using standard addition method with satisfactory results.  相似文献   

11.
This paper describes the simultaneous determination of epinephrine (EP), uric acid (UA) and xanthine (XN) in the presence of ascorbic acid (AA) using electropolymerized ultrathin film of 5-amino-1,3,4-thiadiazole-2-thiol (p-ATT) modified glassy carbon (GC) electrode in 0.2 M phosphate buffer solution (pH 5). Although bare GC electrode resolves the voltammetric signals of AA and XN, it fails to resolve the voltammetric signals of EP and UA in a mixture. However, the p-ATT modified electrode not only separates the voltammetric signals of AA, EP, UA and XN with potential difference of 150, 120 and 400 mV between AA-EP, EP-UA and UA-XN, respectively but also shows higher oxidation current for these molecules. The p-ATT modified electrode exhibits excellent selectivity towards the oxidation of EP, UA and XN in the presence of 40-fold higher concentration of AA. Further, the p-ATT modified electrode was also used for the selective determination of EP in the presence of 40-fold higher concentrations of AA, UA and XN. Using amperometric method, we achieved the lowest detection of 40 nM EP and 60 nM each UA and XN. The amperometric current response was increased linearly with increasing EP concentration in the range of 4.0 × 10−8 to 4.0 × 10−5 M and the detection limit was found to be 27 × 10−11 M (S/N = 3). The practical application of the present modified electrode was demonstrated by determining the concentration of EP in epinephrine tartrate injection and XN in human urine samples.  相似文献   

12.
Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode was prepared by electrochemical polymerization technique. The properties of modified electrode was studied. It was found that the electrochemical properties of modified electrode was very much dependent on the experimental conditions, such as monomer oxidation potential and pH. The modified electrode surface was characterized by scanning electron microscopy (SEM). The PEDOT-PANS film modified electrode shows electrocatalytic activity toward oxidation of dopamine (DA) in acetate buffer solution (pH 5.0) and results in a marked enhancement of the current response. The linear sweep voltammetric (LSV) peak heights are linear with DA concentration from 2 × 10−6 to 1 × 10−5 M. The detection limit is 5 × 10−7 M. More over, the interferences of ascorbic acid (AA) and uric acid (UA) were effectively diminished. This work provides a simple and easy approach for selective determination of dopamine in the presence of ascorbic acid and uric acid.  相似文献   

13.
Po Wang  Xue Huang 《Talanta》2007,73(3):431-437
A novel electrochemical sensor has been constructed by use of a glassy carbon electrode (GCE) coated with a gold nanoparticle/choline (GNP/Ch). Electrochemical impedance spectroscopy (EIS), field emission scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the properties of this modified electrode. It was demonstrated that choline was covalently bounded on the surface of glassy carbon electrode, and deposited gold nanoparticles with average size of about 100 nm uniformly distributed on the surface of Ch. Moreover, the modified electrode exhibits strong electrochemical catalytic activity toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with obviously reduction of overpotentials. For the ternary mixture containing DA, AA and UA, these three compounds can be well separated from each other, allowing simultaneously determination of DA and UA under coexistence of AA. The proposed method can be applied to detect DA and UA in real samples with satisfactory results.  相似文献   

14.
The cationic surfactant, cetyltrimethyl ammonium bromide (CTAB) effect on accurate determination of dopamine in the presence of ascorbic acid (as natural obtrusive in determination of dopamine) using chemically modified electrode based on tin hexacyanoferrate (SnHCF) as a modifier at carbon paste electrode (CPE) is described. The electrochemical response of bare CPE and SnHCF modified electrode (ME) examined in different pHs, in absence and presence of different concentration of dopamine (DA) and ascorbic acid (AA). In addition a simple and reliable method for simultaneous electrochemical determination of AA and DA was presented. It was based on the use of the cationic surfactant CTAB that enables the separation of the oxidation peaks potential of AA and DA. The experimental results showed that DA and AA have two separate peaks. In pH 3 and at presence of 3 mM of CTAB the separation of DA and AA peaks and the eminence of them increased evidently. Good linear response to AA and DA was observed in the range of 0.4–50 and 0.2–25 mM with the correlation of 0.9912 and 0.9955, respectively.  相似文献   

15.
?ükriye Ulubay 《Talanta》2010,80(3):1461-5138
Cu nanoparticles have been electrochemically incorporated polypyrrole film that was used for modification of the glassy carbon electrode surface. The performance of the electrode has been characterized by cyclic voltammetry and atomic force microscopy. The electrode has shown high electrocatalytic activity towards the oxidation of dopamine (DA) and uric acid (UA) simultaneously in a phosphate buffer solution (pH 7.00). The electrocatalytic oxidation currents of UA and DA were found linearly related to concentration over the range 1 × 10−9 to 1 × 10−5 M for UA and 1 × 10−9 to 1 × 10−7 M for DA using DPVs method. The detection limits were determined as 8 × 10−10 M (s/n = 3) for UA and 8.5 × 10−10 M (s/n = 3) for DA at a signal-to-noise ratio of 3.  相似文献   

16.
A nafion covered carbon nanotubes-paste electrode modified with poly(m-ferrocenylaniline), (Nf/p(FcAni)-CNTsPE), provides a novel voltammetric sensor for the selective determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). We studied the electrochemical activity of Nf/p(FcAni)-CNTsPE toward DA, UA, and AA by differential pulse voltammetry (DPV). DA and UA anodic peaks appear at 0.30 and 0.45 V, respectively while an anodic peak for AA was not observed. DPV oxidation peak values are linearly dependent on DA concentration over the range 1–150 μM (r2 = 0.992), and on UA concentration over the range 5–250 μM (r2 = 0.997). DA and UA detection limits are estimated to be 0.21 and 0.58 μM, respectively. The modified electrode shows both good selectivity and reproducibility for the selective determination of DA and UA in real samples. Finally, the modified electrode was successfully applied for the determination of DA and UA in pharmaceutical or biological sample fluids.  相似文献   

17.
A nano-composite of DNA/poly(p-aminobenzensulfonic acid) bi-layer modified glassy carbon electrode as a biosensor was fabricated by electro-deposition method. The DNA layer was electrochemically deposited on the top of electropolymerized layer of poly(p-aminobenzensulfonic acid) (Pp-ABSA). Scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemical impedance spectrum were used for characterization. It demonstrated that the deposited Pp-ABSA formed a 2-D fractal patterned nano-structure on the electrode surface, and which was further covered by a uniform thin DNA layer. Cyclic voltammetry and electrochemical impedance spectrum were used to characterize the deposition, and demonstrated the conductivity of the Pp-ABSA layer. The biosensor was applied to the detection of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). In comparison with DNA and Pp-ABSA single layer modified electrodes, the composite bi-layer modification provided superior electrocatalytic actively towards the oxidation of DA, UA and AA, and separated the originally overlapped differential pulse voltammetric signals of UA, DA and AA oxidation at the bare electrode into three well-defined peaks at pH 7 solution. The peak separation between AA and DA, AA and UA was 176 mV and 312 mV, respectively. In the presence of 1.0 mM AA, the anodic peak current was a linear function of the concentration of DA in the range 0.19-13 microM. The detection limit was 88 nM DA (s/n=3). The anodic peak current of UA was also a linear function of concentration in the range 0.4-23 microM with a detection limit of 0.19 microM in the presence of 0.5 mM AA. The superior sensing ability was attributed to the composite nano-structure. An interaction mechanism was proposed.  相似文献   

18.
Nada F. Atta 《Talanta》2007,72(4):1438-1445
The effect of adding surface-active agents to electrolytes containing terazosin, an antihypertensive drug, on the voltammetric response of glassy carbon electrode was studied. The current signal due to the oxidation process was a function of the amount of terazosin, pH of the medium, type of surfactant, and accumulation time at the electrode surface. Two surfactants were used, an anionic type, sodium dodecyl sulfate (SDS) and a cationic type, cetyl trimethyl ammonium bromide (CTAB). Addition of SDS to the terazosin-containing electrolyte was found to enhance the oxidation current signal while CTAB showed an opposite effect. Beside the interfacial interaction of the surfactant with the electrode surface in reference to the bias applied potential and the charge of surfactant, terazosin-surfactant interaction in the electrolytic solution was found to be critical to the magnitude of current signal. Addition of SDS to terazosin-containing buffer solution resulted in a decrease in the drug absorption spectrum both in the ultra-violet and visible (UV-vis) regions. Moreover, NMR measurements showed considerable chemical shifts for the aromatic protons of the quinazolinyl moiety of the terazosin in presence of SDS. The affected aromatic protons are positioned next to the interacting protonated amino-group of the terazosin with the charged sulfonate-group of SDS. On the other hand, addition of CTAB did not cause noticeable changes both to the UV-vis and NMR spectra of the drug. The use of SDS in the electrochemical determination of terazosin using linear sweep voltammetry and differential pulse voltammetry at solid glassy carbon electrode enhanced the detection limit from 6.00 × 10−7 mol L−1 in absence of surfactant to 4.58 × 10−9 mol L−1 when present. The validity of using this method in the determination of drug active ingredient in urine samples and tablet formulations was also demonstrated.  相似文献   

19.
This work reports on the performance of carbon nanotube modified screen-printed electrodes (SPE-MWCNT) for the selective determination of dopamine (DA) in the presence of ascorbic acid (AA) by adsorptive stripping voltammetry (AdSV). Several operating conditions and parameters were examined including the electrochemical pre-treatment and the previous AA interaction and DA accumulation in the presence AA at physiological conditions. Under the chosen conditions, DA peak current of differential pulse voltammograms increases linearly with DA concentration in the range of 5.0 × 10−8 to 1.0 × 10−6 mol L−1 with a limit of detection of 1.5 × 10−8 mol L−1 in connection with 600 s accumulation time. The sensitivity obtained for DA was independent from the presence or absence of AA; therefore, the proposed method can be readily applied to detect DA in real samples. The proposed methodology was successfully used for the quantification of DA in urine samples.  相似文献   

20.
In this study, an electrochemical ascorbic acid (AA) sensor was constructed based on a glassy carbon electrode modified with palladium nanoparticles supported on graphene oxide (PdNPs-GO). PdNPs with a mean diameter of 2.6 nm were homogeneously deposited on GO sheets by the redox reaction between PdCl42− and GO. Cyclic voltammetry and amperometric methods were used to evaluate the electrocatalytic activity towards the oxidation of AA in neutral media. Compared to a bare GC or a Pd electrode, the anodic peak potential of AA (0.006 V) at PdNPs-GO modified electrode was shifted negatively, and the large anodic peak potential separation (0.172 V) of AA and dopamine (DA), which could contribute to the synergistic effect of GO and PdNPs, was investigated. A further amperometric experiment proved that the proposed sensor was capable of sensitive and selective sensing of AA even in the presence of DA and uric acid. The modified electrode exhibited a rapid response to AA within 5 s and the amperometric signal showed a good linear correlation to AA concentration in a broad range from 20 μM to 2.28 mM with a correlation coefficient of R = 0.9991. Moreover, the proposed sensor was applied to the determination of AA in vitamin C tablet samples. The satisfactory results obtained indicated that the proposed sensor was promising for the development of novel electrochemical sensing for AA determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号