首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A novel high-throughput device based on 96-micro-solid phase extraction (96-μ-SPE) system was constructed for multiresidue determination of nine pesticides in aquatic samples. The extraction procedure was performed on a commercially available 96-well plate system. The extraction module consisted of 96 pieces of 1 cm × 3 cm of cylindrically shaped stainless steel meshes. The prepared meshes were fixed in a home-made polytetrafluoroethylene-based constructed ninety-six holes block for possible simultaneous immersion of meshes into the center of individual wells. Dodecyl methacrylate and ethylene glycol dimethacrylate was copolymerized as a monolithic polymer and placed in the cylindrically shaped stainless steel meshes as extracting medium. A volume of 1 mL of the aquatic sample was transferred into the 96-well plate and the 96-μ-SPE device was applied for the extraction of the selected pesticides. Subsequently, the extracted analytes were analyzed by gas chromatography–mass spectrometry. Influential parameters such as polymer synthesis conditions, sorbent-to-sorbent reproducibility, ionic strength and extraction time were optimized. Intra and inter-sorbent reproducibility on 96-μ-SPE device were evaluated and results revealed that extraction yields are rather similar. Limits of detection were below 4 μg L−1 and the coefficient of determination was satisfactory (r2 > 0.99) for all the studied analytes. The developed method was successfully applied to the extraction and determination of the selected pesticides in surface water samples.  相似文献   

2.
自制固相微萃取装置对水中5种农药残留量的分析   总被引:2,自引:0,他引:2  
合成了一种丙烯酸酯聚合物,并将其作为固相微萃取涂层,使用自制的SPME装置和气质联用仪对水样中5种农药残留量进行分析,该装置制作简单、价格低廉.对影响分析灵敏度的各种实验因素进行了优化,在优化条件下分析5种农药标准样品质量浓度在1~1000 μg/L内与色谱峰面积呈良好的线性关系(r=0.995~0.999),检出限为0.391~1.170 ng/L.将自制涂层与商品涂层(PA)进行了比较,自制涂层对5种农药具有优良的吸附特性,较低的检出限.  相似文献   

3.
Summary Results are presented that were obtained independently by two laboratories employing solid-phase micro extraction (SPME) for the analysis of pesticide residues in honey. The compounds Amitraz, Coumaphos, Cymiazole, Bromopropylate and Fluvalinate, used for chemitherapic treatment of beehives and other widely used agricultural insecticides, were extracted using a polydimethylsiloxane fiber of 100 μm thickness. The precision, accuracy, intervals of linearity and detection limits of the methodare discussed. Considering the rapidity and simplicity of this technique and, on the other hand, the difficulties arising from its application to a very complex matrix, SPME can certainly be considered a useful tool for the rapid screening of residues in honey.  相似文献   

4.
A new method has been developed to detect 36 pesticides that may contaminate tea samples (green, black and fruit tea). The hyphenation of solid-phase microextraction in head-space mode with a comprehensive two-dimensional gas chromatography coupled with high-speed time-of-flight mass spectrometry (HS-SPME-GC × GC/TOF MS) proved to be a quick alternative to conventional GC/MS methodology which employs solvent-based extraction. The key parameters for controlling HS-SPME performance were optimized, including fiber coating type, temperature and absorption time settings and tea matrix modification by adding water. Quantification was carried out using matrix-matched calibration. The repeatability of measurements, expressed as relative standard deviation (R.S.D.), was less than 24% for all analytes. The limits of quantification ranged from 1 to 28 μg kg−1. The optimized method was applied to analyze real life samples obtained from a retail market. Results generated by the new SPME procedure and those obtained by using a conventional one involving ethyl acetate extraction and high-performance gel permeation chromatography (HPGPC) clean up agreed with each other for positive (containing residue) samples.  相似文献   

5.
建立了以纳米SiO2膜为萃取头涂层的固相微萃取(SPME)-气相色谱(GC)联用测定蔬菜中5种农药残留 (p,p′-DDD, p,p′-DDE, o,p′-DDT, p,p′-DDT, 联苯菊酯)的新方法. 探讨并优化了萃取时间、萃取温度和转子转速等参数.  相似文献   

6.
Fang Wu  Wanping Lu  Wei Liu 《Talanta》2010,82(3):1038-57
Using a single-walled carbon nanotubes (SWCNTs) as stationary phase of solid-phase microextraction (SPME) fibers, a simple, low cost and environmentally friendly method for extraction of 13 pesticides in Tea samples has been developed following gas chromatography-mass spectrometric determination. Potential factors affecting the extraction efficiency were investigated and optimized, including extraction and desorption time, extraction temperature, stirring rate, solution pH and ionic strength. Under optimized conditions, the linearity of the developed method was in the range of 0.125-25 ng/mL with correlation coefficients greater than 0.9928 and the limits of detections (LODs) were 0.027-0.23 ng/mL (S/N = 3). Meanwhile, the relative standard deviations (RSDs) for five successive measurements with single fiber, fiber-to-fiber, day-to-day were 2.3-13.0, 8.2-14.6 and 4.1-12.5%, respectively, indicating good reproducibility of the proposed method. The fiber had high extraction efficiency for studied pesticides in comparison with commercial poly(dimethylsiloxane) (PDMS) and polyacrylate (PA) fibers and could be used for more than 70 times without decrease of efficiency. The developed method was successfully applied for the analysis of real samples including green Tea, oolong Tea, white Tea, and flower Tea, and the recoveries of the pesticides spiked in these samples ranged from 75.1 to 118.4%. Chlorfenapyr and λ-cyhalothrin were found in the Tea samples bought randomly from local market. The results demonstrated that the developed SWCNTs-SPME method was a simple, efficient pretreatment and enrichment procedure for pesticides in complex matrices.  相似文献   

7.
A simple, rapid, and efficient ultrasound‐assisted emulsification microextraction method followed by gas chromatography mass spectrometry in selected ion monitoring mode was developed for the determination of organochlorine pesticides in honey samples. The type and volume of organic extraction solvent, pH, effect of added salt content, and centrifuging time and speed were investigated. Under the optimum extraction conditions, 30 μL of 1, 2‐dibromoethane (extraction solvent) was immersed into an ultrasonic bath for 1 min at 40°C. The limits of detection and quantification for all target pesticides were 0.003–0.06 and 0.01–0.2 ng/g, respectively. The extraction recovery was 91–100% and the enrichment factors were 168–192. The relative standard deviation for the method was <6% for intraday (n = 6) and <8% for interday precision (n = 4). The proposed method was successfully applied for the analysis of organochlorine pesticides in honey samples.  相似文献   

8.
《Analytica chimica acta》2004,506(1):71-80
We describe an estimation of measurement uncertainty calculated by the “bottom-up” approach for the determination of the oestrogenic compound nonylphenol in treated water samples by solid-phase extraction (SPE) and solid-phase microextraction (SPME) procedures and GC/MS detection. The results were compared and the different contributions to the uncertainty were evaluated. A study of the linear range was established and validation was performed for both methods using statistical analysis of several indicative parameters. In terms of validation data, precision (R.S.D. values <20%) and trueness (relative error <11%) were obtained for both methods under day-to-day conditions. The results of the estimation of measurement uncertainty obtained for both methods for concentrations higher than 1 μg/l have demonstrated that the time-consuming SPE method has a lower relative uncertainty (32%) than the SPME method (42.8%). The chromatographic uncertainty value was the main factor in the SPME method whereas the recovery factor (used to calculate the concentration) was the main contribution to uncertainty in the SPE method.  相似文献   

9.
A simple and efficient binary solvent-based two-phase hollow fiber membrane (HFM)-protected liquid-phase microextraction (BN-LPME) technique for moderately polar compounds was developed. Six organophosphorous pesticides (OPPs) (triethylphosphorothioate, thionazin, sulfotep, phorate, disulfoton, methyl parathion and ethyl parathion) were used as model compounds and extracted from 10-mL wastewater with a binary-solvent (toluene:hexane, 1:1) mixture. Some important extraction parameters, such as extraction time, effect of salt, sample pH and solvent ratio composition were optimized. BN-LPME combined with gas chromatography/mass spectrometric (GC/MS) analysis provided repeatability (R.S.D.s ≤ 12%, n = 4), and linearity (r ≤ 0.994) and solid-phase microextraction provides comparable of R.S.D.s ≤ 13%, n = 4 and linearity (r = ≤0.966) for spiked water samples. The limits of detection (LODs) were in the range of 0.3-11.4 ng L−1 for BN-LPME and 3.1-120.5 ng L−1 for SPME at (S/N = 3) under GC/MS selective ion monitoring mode. In addition to high enrichment, BN-LPME also served as a sample cleanup procedure, with the HFM act as a filtering medium to prevent large particles and extraneous materials from being extracted. To investigate and compare their applicability, the BN-LPME and SPME procedures were applied to the detection of OPPs in domestic wastewater samples.  相似文献   

10.
Solid-phase extraction (SPE) and solid-phase microextraction (SPME) were evaluated for the analysis of short-chain chlorinated paraffins (SCCPs) in water samples using gas chromatography coupled to negative chemical ionisation mass spectrometry (GC-NCI-MS). For SPE optimisation, four commercially available SPE cartridges were tested and several SPE parameters, such as the elution solvent, elution volume and breakthrough volume were studied. The best results were obtained with Varian Bond Elut-C18. In order to achieve a high selectivity in the determination of SCCPs, GC-NCI-MS was used. Quality parameters of the optimised SPE and SPME procedures were determined, and the best results were obtained for the SPE/GC-NCI-MS method with LODs of 5 and 20 ng l(-1) for tap and river water, respectively. This method was successfully applied to the analysis of SCCPs in river water samples at concentrations below the microg l(-1) level.  相似文献   

11.
A sensitive and efficient solid‐phase microextraction method, based on liquid chromatography and UV–Vis detection, was developed and validated as an alternative method for sample screening prior to LC‐MS analysis. It enables the simultaneous determination of ten pesticides in mango fruits. The fiber used was polydimethylsiloxane while optimum SPME conditions employed have been developed and optimized in a previous work. The desorption process was performed in static mode, using acetonitrile as a solvent. The results indicate that the DI‐SPME/HPLC/UV–Vis procedure resulted in good linear range, accuracy, precision and sensibility and is adequate for analyzing pesticide residues in mango fruits. The limits of detection (0.6–3.3 μg/kg) and quantification (2.0–10.0 μg/kg) were achieved with values lower than the maximum residue levels (MRLs) established by Brazilian legislation for all pesticides in this study. The average recovery rates obtained for each pesticide ranged from 71.6 to 104.3% at three fortification levels, with the relative standard deviation ranging from 4.3 to 18.6%. The proposed method was applied for the determination of the aforementioned compounds in commercial mango samples and residues of azoxystrobin, fenthion, permethrin, abamectin and bifenthrin were detected in the mango samples, although below the MRLs established by Brazilian legislation.  相似文献   

12.
采用固相微萃取-气相色谱质谱法联用测定了水体中痕量多环麝香类化合物。对固相微萃取条件和解析条件进行了优化,确定了微萃取条件为:选用65μmPDMS-DVB萃取头、顶空萃取模式(HS),在800 r/min,60℃条件下,萃取45 min;萃取过程中保持pH 7并且不加入NaCl;解析条件为:解析时间为3 min,插入GC深度为4 cm,进样口温度为250℃。方法的检测限为0.29~0.37 ng/L,线性范围5~1000ng/L,相对标准偏差1.5%~2.2%。对实际污水厂不同类型的水样使用优化后的实验条件进行了验证试验,目标化合物的回收率在82.5%~92.8%之间,表明优化后的试验条件适用于实际水体中痕量多环麝香类化合物的分析测定。  相似文献   

13.
A solid-phase microextraction (SPME) procedure using two commercial fibers coupled with high-performance liquid chromatography (HPLC) is presented for the extraction and determination of organochlorine pesticides in water samples. We have evaluated the extraction efficiency of this kind of compound using two different fibers: 60-μm polydimethylsiloxane–divinylbenzene (PDMS-DVB) and Carbowax/TPR-100 (CW/TPR). Parameters involved in the extraction and desorption procedures (e.g. extraction time, ionic strength, extraction temperature, desorption and soaking time) were studied and optimized to achieve the maximum efficiency. Results indicate that both PDMS-DVB and CW/TPR fibers are suitable for the extraction of this type of compound, and a simple calibration curve method based on simple aqueous standards can be used. All the correlation coefficients were better than 0.9950, and the RSDs ranged from 7% to 13% for 60-μm PDMS-DVB fiber and from 3% to 10% for CW/TPR fiber. Optimized procedures were applied to the determination of a mixture of six organochlorine pesticides in environmental liquid samples (sea, sewage and ground waters), employing HPLC with UV-diode array detector.  相似文献   

14.
A direct immersion solid-phase microextraction coupled with gas chromatography-electron capture detection (SPME-GC-ECD) method was optimized and validated for the quantitative determination of 18 organochlorine pesticides in ground water. Ionic strength, stirring speed, adsorption and desorption time and pH were some of the parameters investigated in order to select the optimum conditions for SPME with a 50/30 DVB/CAR/PDMS fiber coating. The SPME-GC/ECD method showed good linear response below 10 ng L−1 with R2 values in the range of 0.9950–0.9997. The repeatability of the measurements were lower than 10%. Values of relative recoveries located within the acceptable range (80–120%). Limits of quantification (LOQ) from 4.5 × 10−3 to 1.5 ng L−1 were obtained. On average 8 organochlorines were found per sample, even so all the 18 organochlorines were quantified among them. Substances such as endrin ketone, γ-BHC and β-BHC were the pesticides determined in larger concentration (0.06–305 ng L−1), while methoxychlor and aldrin in smaller amounts (0.151–1.55 ng L−1). Measured levels of organochlorine pesticides were above the limits established by Brazilian regulations.  相似文献   

15.
Solid-phase microextraction method (SPME) coupled to GC/ECD has been developed and validated for the determination of phthalic acid esters (dimethyl-, diethyl-, di-n-butyl-, butylbenzyl-, di-2-ethylhexyl- and di-n-octyl phthalate) in water samples. Two types of coatings (PDMS, PA), altogether four different kinds of fibers have been investigated. Both parameters affecting the partition of analytes between a fiber coating and aqueous phase (i.e. extraction time, extraction temperature, agitation) and conditions of the thermal desorption in a GC injector were optimized. The final SPME method employing the polyacrylate fiber, extraction time 20 min, heating and stirring of the sample enabled the determination of all six phthalates in water samples. The method showed linear response over four orders of magnitude and the limits of quantification of the method ranged between 0.001 and 0.050 μg l−1. The repeatability expressed as R.S.D. was in the range 4-10% for the spiking level 7 μg l−1 of each analyte. The applicability of the developed SPME method was demonstrated for real water samples.  相似文献   

16.
Summary Extra-fine powdered activated charcoal has been used as stationary phase (coating layer) in solid-phase microextraction (SPME). The efficiency and reliability of the prepared device have been investigated for the extraction of some volatile organic compounds such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) from the headspace of water samples. Monitoring of the extracted compounds and further quantitative analysis of the real samples have been performed by capillary GC-FID. Effects of several factors such as temperature, addition of salt, and stirring speed on extraction efficiency and exposure time have been studied. Under optimum conditions, extraction recoveries for these compounds from 50 mL water were >95%. The calibration graphs were linear in the range 5 to 104 pg mL−1 and the detection limit for each BTEX compound was 1.5–2 pg mL−1. The results obtained by use of this porous layer activated charcoal (PLAC)-coated fiber have also been compared with results reported in the literature by use of a polydimethylsiloxane (PDMS)-coated fiber. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

17.
The applicability of headspace solid-phase microextraction (HS-SPME) to pesticide determination in water samples was demonstrated by evaluating the effects of temperature on the extraction of the pesticides. The evaluations were performed using an automated system with a heating module. The 174 pesticides that are detectable with gas chromatograph were selected objectively and impartially based on their physical properties: vapor pressure and partition coefficient between octanol and water. Of the 174 pesticides, 158 (90% of tested) were extracted with a polyacrylate-coated fiber between 30 and 100 degrees C and were determined with gas chromatograph-mass spectrometry. The extraction-temperature profiles of the 158 extracted pesticides were obtained to evaluate the effects of temperature on the extraction of pesticides. The pesticides were classified into four groups according to the shape of their extraction-temperature profiles. The line of demarcation between extractable pesticides and non-extractable pesticides could be drawn in the physical property diagram (a double logarithmic plot of their vapor pressure and partition coefficient between octanol and water). The plot also revealed relationships between classified extraction features and their physical properties. The new method for multi residue screening in which the analytes were categorized into sub-groups based on extraction temperature was developed. In order to evaluate the quantitivity of the developed method, the 45 pesticides were chosen among the pesticides that are typically monitored in waters. Linear response data for 40 of the 45 was obtained in the concentration range below 5 microg/l with correlation coefficients ranging between 0.979 and 0.999. The other five pesticides had poor responses. Relative standard deviations at the concentration of the lowest standard solution for each calibration curve of the pesticides ranged from 3.6 to 18%. The value of 0.01 microg/l in the limits of detection for 17 pesticides was achieved only under the approximate conditions for screening, not under the individually optimized conditions for each pesticide. Recoveries of tested pesticides in actual matrices were essentially in agreement with those obtained by solid-phase extraction.  相似文献   

18.
Nutritional markers have several advantages for epidemiologic and clinical assays, when compared to dietary data obtained by food frequency questionnaires. Few studies have assessed whether total polyphenol (TP) compounds provide a valid biomarker for TP intake. To date, there has been almost no literature describing methods to determine TP in complex matrices such as urine, which have many interfering substances.We report a rapid Folin-Ciocalteu method to determine TP in urine samples using Oasis® MAX 96-well plate cartridges for solid phase extraction. These plates allow analysis of a high number of samples at the same time. We performed a prospective, randomized, crossover trial and one cross-sectional study with 60 volunteers from the PREDIMED trial, seeking to evaluate whether the TP in urine were correlated with polyphenol intake and could, therefore, be considered as a marker of intake of these compounds.The assay was optimized; the sensitivity and the polarity range of urine polyphenols were increased and the detection and quantification limits were significantly reduced. The metabolites in standards solution and urine samples were stable under the storage and handling conditions. In the clinical trial and the cross-sectional study, TP excreted in spot urine samples were positively correlated with TP intake, r = 0.48, P < 0.01 and r = 0.257, P = 0.04, respectively.The methodology described may be used to detect TP in urine samples, employing the high throughput of 96-well microtiter plates and reader. The method is fast and simple and it allows analysis of a large number of samples at the same time.  相似文献   

19.
A novel method of determining organochlorine pesticides (OCPs) is described. It is based on solid-phase microextraction (SPME) and gas chromatography–electron capture detection. During the development of the method, soil samples were prepared, spiked with standard solution, and then aged for some time. Extraction conditions such as the extraction time, the NaCl content, the volume of water, the extraction temperature and the desorption time were investigated and optimized. The limits of detection obtained using the method ranged from 0.10 to 0.51 ng g−1, and relative standard deviations were lower than 10% for most organochlorine pesticides. Real soil samples were successfully analyzed using the proposed method. The results from the method developed here were in good agreement with those obtained using ultrasonic extraction. The result demonstrates that aging soils spiked with standard solution is an important method development step, because the soil samples obtained using this approach are more like real soils than those obtained when aging is not used.   相似文献   

20.
Summary An improved analytical methodology based on solid-phase disc extraction (SPDE) and a single-step clean-up on Florisil is proposed for a large number of organochlorine pesticide residues in serum. Extraction was performed following denaturation of proteins with formic acid after it was shown that it has no degradation effect on targeted analytes (α, β, γ-HCH isomers, HCB, DDT with its 5 analogues, endrin, aldrin, dieldrin, alachlor; heptachlor, heptachlorepaxide, α, β-endosulphan, endosulphansulphate, methoxychlor and mirex). Determination and quantification were by GC-ECD and GC-MS on two different, analytical capillary-columns using PCNB (pentachlonitrobenzene) and PCB 190 internal standards. Recoveries and limits of detection determined on pooled serum ranged 54–102% (for medium spiking level) and 10–50 pg ml−1 serum respectively. Twenty-one individuals serum samples from the University Hospital of Antwerp were analysed and results were related to the ages of the donors. For compounds not detected by GC-MS, eventual coelution with PCBs in GC-ECD analysis was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号