首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Altered levels of aminothiols in biological fluids are thought to be an important risk indicator for several diseases, and reliable methods for the accurate determination of aminothiols concentrations in plasma are thus required. In this paper ammonium 5-bromo-7-fluorobenzo-2-oxa-1,3-diazole-4-sulphonate (SBD-BF) is proposed as a convenient fluorogenic derivatizating reagent for the determination of aminothiols (cysteine, cysteinylglycine, homocysteine and glutathione) by HPLC with fluorescence detection. The reactions of SBD-BF with aminothiols at room temperature are about three-times faster than those of ammonium 7-fluorobenzo-2-oxa-1,3-diazole-4-sulphonate (the most frequently employed reagent) at 60 °C. The derivatives of SBD-BF with cysteine, cysteinylglycine, homocysteine and glutathione are easily separated by HPLC and their calibration curves show excellent linearity over the range 0.05–20 μmol/L with excellent r2 values for all analytes. SBD-BF reacts with thiols under mild conditions, i.e. at 25 °C over about 30 min, and is proposed as a suitable fluorogenic reagent for thiol derivatization to be introduced in analytical clinical chemistry. The detection limits of Cys, Cys-Gly, Hcy and GSH at a signal-to-noise ratio of 5 were 0.1 μM for Cys, 0.01 μM for Cys-Gly and Hcy, and 0.02 μM for GSH. Furthermore, validation parameters of the proposed method are quite satisfactory. As an application of this method the determination of thiol derivatives in human plasma was carried out on a number of samples.  相似文献   

2.
Two fluorescence probes for the detection of cysteine (Cys), glutathione (GSH) and other biothiols, such as homocysteine (Hcy) and cysteinyl-glycine (Cys-Gly), were developed. These molecular probes are coumarin-based derivatives containing a chalcone-like moiety that reacts with biothiols through a Michael addition reaction, leading to strong fluorescence enhancements. The reactivity of the tested biothiols toward both probes (ChC1 and ChC2) follows the order Cys > GSH > Hcy > Cys-Gly, ChC1 being less reactive than ChC2. Possible interference with other amino acids was assessed. ChC1 and ChC2 display a highly selective fluorescence enhancement with thiols, allowing these probes to be used for fluorimetric thiol determination in SH-SY5Y cells.  相似文献   

3.
A novel on-line HPLC-DTNB method was developed for the selective determination of biologically important thiols (biothiols) such as l-cysteine (Cys), glutathione (GSH), homocysteine (HCys), N-acetylcysteine (NAC), and 1,4-dithioerythritol (DTE) in pharmaceuticals and tissue homogenates. The biothiols were separated on C18 column using gradient elution, reacted with the postcolumn reagent, DTNB in 0.5% M-β-CD (w/v) solution at pH 8, to form yellow-colored 5-thio-2-nitrobenzoic acid (TNB), and monitored with a PDA detector (λ = 410 nm). With the optimized conditions for chromatography and the post-column derivatization, 40 nM of NAC, 40 nM of Cys, and 50 nM of GSH can be determined. The relative standard deviations of the recommended method were in the range of 3.2–5.4% for 50 μM biothiols. The negative peaks of biothiol constituents were monitored by measuring the increase in absorbance due to TNB chromophore. The detection limits of biothiols at 410 nm (in the range of 0.04–0.58 μM) after post-column derivatization with DTNB + M-β-CD were much lower than those at 205 nm UV-detection without derivatization, and were distinctly lower than those with post-column DTNB alone. The method is rapid, inexpensive, versatile, nonlaborious, uses stable reagents, and enables the on-line qualitative and quantitative estimation of biothiol constituents of biological fluids and pharmaceuticals.  相似文献   

4.
The present work was aimed to the development of a fluorescence assay using the universal 96-well microplate format, for the measurement of reduced glutathione (GSH) in yeast cells. The method relies upon the reaction between GSH and a highly selective fluorogenic probe, i.e. naphthalene-2,3-dicarboxaldehyde (NDA). The optimization of the method included the extraction step of GSH from cultured yeast cells in a cold perchloric acid solution, derivatization conditions (10-min reaction at pH 8.6 and at 20 ± 2 °C in darkness) and stability studies of the resulting fluorescent adduct. Full selectivity was observed versus other endogenous thiols (except for γ-glutamylcysteine), glutathione disulfide (GSSG) and enzymatic reducing reagents of GSSG. Linearity was verified in the range 0.3-6.5 μM (R2 > 0.98) and limits of quantification and detection were 0.3 and 0.05 μM, respectively. Relative standard deviation corresponding to repeatability (n = 3) and inter-day precision (n = 5) were 2.8 and 6.1%, respectively. Mean GSH recovery from cell extracts was 95%. The method appeared highly correlated (R2 = 0.96) with a previously reported HPLC method.The method was then applied to the monitoring of GSH in the yeast strain Kluyveromyces lactis during its growth period and in the presence of an inhibitor of GSH biosynthesis. The method presents the main advantage of a high throughput for the measurement of biological samples. The extent of the method to the study of the redox couple GSSG/GSH by including an enzymatic reduction step and the enhancement of the fluorescence signal using cyclodextrins were discussed.  相似文献   

5.
A new thiol fluorescence probe, 5-maleimidyl-2-(m-methylphenyl)benzoxazole (MMPB) has been developed for the direct determination of reduced glutathione (GSH) in real samples. Compared to the reported N-substituted maleimide type of thiol reagents, the main advantage of MMPB is its rather high selectivity for GSH to cysteine (Cys), which often coexists with GSH in biological samples. Under mild conditions similar to the physiological environment, MMPB reacted with GSH to give a highly fluorescent derivative with the excitation and emission wavelengths of 299.2 and 355.8 nm, respectively. In the presence of 0.40-fold (molar ratio) of Cys, a linear relationship was found in the range of 0-1.62×10−7 mol l−1 with the detection limit (3σ) of 3.23×10−10 mol l−1 for GSH determination. Many other amino acids (100-fold) did not interfere with the determination. Since the molar ratio of Cys to GSH in mammalian tissues and blood does not exceed the value of 0.40:1, the proposed method has been used in the direct determination of GSH in these kinds of biological samples, such as human blood, pig’s liver and heart with the recoveries of 94.3-104.5%  相似文献   

6.
In this article, we report a simple method for selective enrichment of aminothiols using Tween 20-capped gold nanoparticles (AuNPs) prior to capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF). Compared to citrate-capped AuNPs, Tween 20-capped AuNPs exhibit the ability to disperse in a highly saline solution and selectively extract aminothiols through the formation of Au–S bonds. After extraction and centrifugation, 1 mM thioglycollic acid (TGA) was utilized to remove aminothiols that attached to the NP surfaces. After a solution of 8.0 mL aminothiols were extracted using 2× AuNPs (200 μL), the extracted aminothiols derivatized with o-phthalaldehyde at pH 12.0 were detected by CE-LIF. As a result, the limits of detection at a signal-to-noise ratio of 3 for homocysteine (HCys), glutathione (GSH), and γ-glutamycysteine (Glu-cys) are 4013.2, 79.8, and 382.8 pM, respectively. The use of this probe provided approximately 11-, 282-, and 21-fold sensitivity improvements for HCys, GSH, and Glu-cys, respectively. A practical analysis of HCys, GSH, and Glu-cys in human urine sample has been accomplished by this present method.  相似文献   

7.
The design, synthesis and properties of a new derivatizing reagent, 1,3,5,7-tetramethyl-8-phenyl-(4-iodoacetamido)difluoroboradiaza-s-indacene (TMPAB-I), for thiol groups are presented. Using the derivatization of TMPAB-I with thiols, a new high-performance liquid chromatographic method for measuring low-molecular-weight thiol-containing compounds, including coenzyme A (CoA), glutathione, N-acetylcysteine, cysteine, homocysteine (HCys) and 6-mercaptopurine has been developed. The reaction of TMPAB-I with thiols is specific, fast and stable for both TMPAB-I and the derivatives. A baseline separation of all the six derivatives is achieved by isocratic elution on reversed-phase column within 20 min with detection wavelengths of 500 and 510 nm for the excitation and emission, respectively, and the limits of detection (signal-to-noise ratio = 3) are from 1.8 fmol (CoA) to 14.0 fmol (HCys), respectively, per 20 μL injection. The utility of the proposed method has been validated by measuring thiol-containing compounds in human plasma samples from healthy persons and patients with hypertension, with recoveries of 94.2–106.8%.  相似文献   

8.
A fluorometric method for quantity analysis of biothiols was developed using a graphene oxide (GO)-based “molecular beacon”-like probe, which consisted of FITC labeled thymine (T)-rich single-stranded DNA (ssDNA), GO and Hg2+ ions. The labeled ssDNA containing T–T mismatches would self-hybridize to duplex in the presence of Hg2+, which can avoid its adsorption on GO and the fluorescence of this GO-based probe was recovered. The fluorescence of the probe quenched after the addition of biothiols such as glutathione (GSH) and cysteine (Cys) owing to thiol groups can selectively competitive ligation of Hg2+ ions with T–T mismatches. In the present work, the GO-based probe was used for the determination of GSH and Cys. Under the optimal conditions, a linear correlation was established between fluorescence intensity ratio I0/I and the concentration of GSH in the range of 2.0 × 10−9–5.0 × 10−7 mol L−1 with a detection limit of 1.0 × 10−9 mol L−1. The linear range for Cys is from 5.0 × 10−9 to 4.5 × 10−7 mol L−1 with a detection limit of 2.0 × 10−9 mol L−1. The proposed method was applied to the determination of GSH in human serum and cell extract samples with satisfactory results.  相似文献   

9.
In this study the development, validation and application of a new chromatographic method for the determination of glutathione (GSH) in wine samples is presented. The separation of the GSH was carried out using a sulfobetaine-based hydrophilic interaction chromatography (HILIC) analytical column whereas its detection was carried out spectrofluorimetrically (λext/λem = 340/455 nm) after post-column derivatization with o-phthalaldehyde. GSH was separated efficiently from matrix endogenous compounds of wines by using a mobile phase of 15 mmol L−1 CH3COONH4 (pH = 2.5)/CH3CN, 35/65% (v/v). The parameters of the post-column reaction (pH, amount concentration of the reagent and buffer solution, flow rate, length of the reaction coil) were investigated. The linear determination range for GSH was 0.25–5.0 μmol L−1 and the LOD was 19 nmol L−1. No matrix effect was observed, while the accuracy was evaluated with recovery experiments and was ranged between 89% and 108%.  相似文献   

10.
This work reports the development of a selective, sensitive and rapid spectrofluorimetric method for the determination of reduced glutathione (GSH) in the presence of relatively high levels of cysteine (Cys) in clinical and biological samples using 1,3,5,7-tetramethyl-8-phenyl-(2-maleimide)-difluoroboradiaza-s-indacene (TMPAB-o-M). The fluorescence from TMPAB-o-M is strongly quenched by its maleimide moiety, but after reaction with thiol, the fluorescence is restored with a 350-fold intensity increase (fluorescence quantum yield from 0.002 to 0.73). In H3Cit-Na2HPO4 buffer (pH 7.40), the derivatization is completed in just 5 min under 37 °C. The linear range is 0.005-0.2 μmol L−1, with detection limit of 1.1 × 10−10 mol L−1 (signal-to-noise ratio = 3). Almost all amino acids, including Cys, impose no interference even if present at relatively high concentrations (amino acids:GSH = 100:1, Cys:GSH = 1:1, molar ratio, CGSH = 3 × 10−7 mol L−1). The sample can be used directly without further treatment after the protein is removed. The developed method is precise with a relative standard deviation (R.S.D.) lower than 5.0% (n = 6) and has been applied to the determination of GSH in human blood and pig’s liver with recoveries between 94.4 and 105.6%.  相似文献   

11.
A new thiol-reactive derivatizing reagent, 3-iodoacetylaminobenzanthrone (IAB) has been developed for thiol analysis in liquid chromatography. In aqueous methanol containing 15 mM pH 8.3 H3BO3-KCl-Na2CO3 buffer, IAB reacted with thiols at 35 °C for 15 min. The derivatives of IAB with glutathione (GSH), cysteine (Cys), homocysteine (Hcy) and N-acetylcysteine (Nac) were well separated on a C18 column with the mobile phase of methanol-water (50:50, v/v) containing 15 mM pH 2.7 H3cit-Na2HPO4 buffer. At λex/λem=420/540 nm, the detection limits were 20, 20, 55 and 40 fmol (1, 1, 2.3 and 2 nM), respectively, with a signal-to-noise ratio of 3. Owing to the preferential selectivity of iodoacetamidyl moiety to SH group, amino acids, aliphatic amines, phenol and alcohols had no obvious interference with the determination. The proposed method has been applied to the determination of thiols in human blood with recoveries of 98.5-105.3%.  相似文献   

12.
13.
Matsumiya H  Iki N  Miyano S 《Talanta》2004,62(2):337-342
Sulfonylcalix[4]arenetetrasulfonate (SO2CAS) has been examined as a pre-column chelating reagent for ultratrace determination of metal ions by ion-pair reversed-phase high-performance liquid chromatography with spectrophotometric detection. Metal ions were converted into the SO2CAS chelates in an acetic buffer solution (pH 4.7). The chelates were injected onto a n-octadecylsilanized silica-type Chromolith™ Performance RP-18e column and were eluted using a methanol (50 wt.%)-water eluent (pH 5.6) containing tetra-n-butylammonium bromide (7.0 mmol kg−1), acetate buffer (5.0 mmol kg−1), and disodium ethylendiamine-N,N,N′,N′-tetraacetate (0.10 mmol kg−1). Under the conditions used, Al(III), Fe(III), and Ti(IV) were selectively detected among 21 kinds of metal ions [Al(III), Ba(II), Be(II), Ca(II), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ga(III), Hf(IV), In(III), Mg(II), Mn(II), Mo(VI), Ni(II), Pb(II), Ti(IV), V(V), Zn(II), and Zr(IV)]. The detection limits on a 3σ blank basis were 8.8 nmol dm−3 (0.24 ng cm−3) for Al(III), 7.6 nmol dm−3 (0.42 ng cm−3) for Fe(III), and 17 nmol dm−3 (0.80 ng cm−3) for Ti(IV). The practical applicability of the proposed method was checked using river and tap water samples.  相似文献   

14.
A fast, simple, and sensitive flow injection analysis method was developed for the measurement of semicarbazide-sensitive amine oxidase (SSAO) activity in human serum. Benzaldehyde, generated by the action of SSAO after incubation of serum with benzylamine, was derivatized with a novel aromatic aldehyde-specific reagent (1,2-diaminoanthraquinone) and the fluorescent product was measured by fluorescence detection at excitation and emission wavelengths of 390 and 570 nm, respectively. Serum SSAO activity was defined as benzaldehyde (nmol) formed per milliliter serum per hour. The method was linear over SSAO activity of 0.2–150.0 nmol mL−1 h−1 with a detection limit of 0.06 nmol mL−1 h−1. The %RSD of intra-day and inter-day precision did not exceed 9.4% and the accuracy ranged from −6.5 to −0.6%. The method was applied for the determination of the serum SSAO activity in healthy controls (C, n = 24) and diabetes mellitus patients (DM, n = 18). It was demonstrated that the activity (mean ± SE) of SSAO in diabetics sera was significantly higher than that in healthy subjects’ ones (DM; 73.3 ± 1.8 nmol mL−1 h−1vs C; 58.9 ± 2.2 nmol mL−1 h−1, P 0.01).  相似文献   

15.
In this paper, we presented a novel, rapid and highly sensitive sensor for glutathione (GSH), cysteine (Cys) and histidine (His) based on the recovered fluorescence of the carbon quantum dots (CQDs)–Hg(II) system. The CQDs were synthesized by microwave-assisted approach in one pot according to our previous report. The fluorescence of CQDs could be quenched in the presence of Hg(II) due to the coordination occurring between Hg(II) and functional groups on the surface of CQDs. Subsequently, the fluorescence of the CQDs–Hg(II) system was recovered gradually with the addition of GSH, Cys or His due to their stronger affinity with Hg(II). A good linear relationship was obtained from 0.10 to 20 μmol L−1 for GSH, from 0.20 to 45 μmol L−1 for Cys and from 0.50 to 60 μmol L−1 for His, respectively. This method has been successfully applied to the trace detection of GSH, Cys or His in human serum samples with satisfactory results. The proposed method was simple in design and fast in operation, which demonstrated great potential in bio-sensing fields.  相似文献   

16.
The present work describes the development of an amperometric sensor based on hemin immobilized on a titanium oxide modified silica toward detection of artemisinin (ARN) in neutral medium at an applied potential of −0.5 V vs. Ag/AgCl. The sensor presented its best performance in 0.1 mol L−1 phosphate buffer solution, at pH 7.0. After optimizing the operational conditions, the sensor provided a linear response range for ARN reduction from 50 nmol L−1 to 1000 nmol L−1 with a sensitivity, detection and quantification limits of 24.66 A L mol−1, 15 nmol L−1 and 52 nmol L−1, respectively. The proposed sensor showed a stable response for at least 80 successive determinations. The repeatability of the measurements with the sensor and the preparation of a series of electrodes, evaluated in terms of relative standard deviation, were 4.1% and 5.0%, respectively, for n = 10. The developed sensor was applied for the determination of ARN in the crude extracts of A. vulgaris L and the average recovery for these samples is 101.4 (± 3.1)%.  相似文献   

17.
The weak fluorescence of N-[P-2-benzoxazolyl)phenyl]maleimide (BOPM) can be greatly enhanced by thiol-containing compounds. A sensitive and simple spectrofluorimetric method based on the use of BOPM has been developed for the determination of thiols such as cysteine (Cys) and reduced glutathione (GSH). Calibration plots were linear in the concentration range from 0 to 1.6 × 10–7 mol L–1 for Cys and 0 to 1.7 × 10–7 mol L–1 for GSH. The detection limits (3σ) were 2.36 × 10–10 mol L–1 for Cys and 1.49 × 10–10 mol L–1 for GSH. Many other amino acids (present at 100-fold greater concentrations) did not interfere with the determination. The proposed method has been used for the determination of Cys in protein hydrolysate and cystine electrolyte or GSH in serum, with recoveries of 95.4–103.7%.  相似文献   

18.
Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots   总被引:1,自引:0,他引:1  
Wang GL  Dong YM  Yang HX  Li ZJ 《Talanta》2011,83(3):943-947
The importance of cysteine (Cys) in biological systems has stimulated a great deal of efforts in the development of analytical methods for the determination of this amino acid. In this work, a novel fluorescent probe for Cys based on citrate (Cit)-capped CdS quantum dots (QDs) is reported. The Cit-capped CdS QDs fluorescent probe offers good sensitivity and selectivity for detecting Cys. A good linear relationship was obtained from 1.0 × 10−8 mol L−1 to 5.0 × 10−5 mol L−1 for Cys. The detection limit was calculated as 5.4 × 10−9 mol L−1. The proposed method was applied to detect Cys in human urine samples, which showed satisfactory results. This assay is based on both the lability of Cit and the strong affinity of thiols to the surface of CdS QDs. The addition of Cys improved the passivation of the surface traps of CdS QDs and enhanced the fluorescence intensity.  相似文献   

19.
The high sensitivity that can be attained using an enzymatic system and mediated by catechols has been verified by on-line interfacing of a rotating biosensor and continuous flow/stopped-flow/continuous-flow processing. Horseradish peroxidase, HRP, [EC 1.11.1.7], immobilized on a rotating disk, in presence of hydrogen peroxide catalyzed the oxidation of catechols, whose back electrochemical reduction was detected on glassy carbon electrode surface at −150 mV. Thus, when l-cysteine (Cys) or glutathione (GSH) was added to the solution, these thiol-containing compounds participate in Michael addition reactions with catechols to form the corresponding thioquinone derivatives, decreasing the peak current obtained proportionally to the increase of its concentration. Cys was used as the model thiol-containing compound for the study. The highest response for Cys was obtained around pH 7. This method could be used to determine Cys concentration in the range 0.05-90 μM (r = 0.998) and GSH concentration in the range 0.04-90 μM (r = 0.999). The determination of Cys and GSH were possible with a limit of detection of 0.7 and 0.3 nM, respectively, in the processing of as many as 25 samples per hour. Current response of the HRP-rotating biosensor is not affected by the oxidized form of GSH and Cys (glutathione disulfide, GSSG, and l-cystine, respectively), by sulfur-containing and alkyl-amino compounds such as methionine and lysine, respectively. The interferences from easily oxidizable species such as ascorbic acid and uric acid are lowest.  相似文献   

20.
A procedure for the extraction of free amino acids was applied to isolate S-methylmethionine (SMM) from late harvest Petit Manseng grapes. Grapes were destemmed and crushed, and the obtained clarified must was percolated through cation-exchange resins (Dowex 50 WX4-100). The retained compounds were eluted with ammonia solution and the extract was finally concentrated. Taking into account the potential DMS (PDMS using heat-alkaline treatment assay) of the initial grape juice used (51.5 nmol mL−1) and the concentration factor of the extract (17.9-fold), the PDMS of the final extract (678 nmol mL−1) gave an overall recovery of 73.5% for juice SMM. This compound was identified and quantified (484.5 nmol mL−1 relatively to [2H3]-SMM used as internal standard) by its selective detection in this extract without derivatization by MALDI-TOF-MS using instrumentation and procedures previously reported to analyze SMM in complex natural extracts. SMM and 22 other amino acids in the initial must and in the final SMM extract were also determined using a Biochrom 30 amino acid analyser with post-column ninhydrin derivatization. SMM peak identification and quantification (401.2 nmol mL−1 relatively to norleucine used as internal standard) were carried out by comparison with commercial SMM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号