首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work describes a novel type of bismuth electrode for stripping voltammetry based on coating a silicon substrate with a thin bismuth film by means of sputtering. The bismuth-based sensors were characterized by optical methods (scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD)) and as well as by linear sweep voltammetry. Subsequently, the electrodes were tested for the detection of low concentrations of trace metals (Cd(II), Pb(II) and Ni(II)) by stripping voltammetry. Well-formed stripping peaks were observed for trace concentrations of the target analytes demonstrating “proof-of-principle” for these sensors. This type of electrochemical device, utilizing thin-film technology for the formation of the bismuth film, holds promise for future applications in trace metal analysis.  相似文献   

2.
Development of sensing systems for trace metals is highly important because the abnormal concentration of some metals or the presence of some traces of toxic metals is very dangerous. The stripping analysis is an efficient way to detect metals even at low concentrations. Much work has been carried out to develop highly sensitive, stable, reproducible, and cheap electrochemical sensors for metal ions. This review summarizes the recent progress is stripping analysis of trace metals, focusing on works published from 2015 to 2019.  相似文献   

3.
建立了一种测定痕量铋的新方法,即利用掺杂硒碳糊电极作为工作电极的阳极溶出法.在0.1 mol/L的HCl底液中,Bi3+于+0.05V(vs.Ag/AgCl)出现灵敏的氧化溶出峰,铋离子的浓度在1.0×10-5~1.0×10-9 mol/L范围内其对数值lgc与铋的氧化峰电流值呈线性关系,检出限达1.0×10 -10 ...  相似文献   

4.
碳糊电极在有机物电化学分析中的应用   总被引:8,自引:1,他引:8  
碳糊电极作为一种制备简单、易于更新和重现性好的新型电极,在有机物分析中应用非常广泛。本文就从电极材料的选择、修饰剂的选用和有机物分类等几个方面对近几年碳糊电极在有机物电化学分析上的进展进行评述。引用文献54篇。  相似文献   

5.
This work reports the optimisation of a new analytical method for lead ion detection in milk; the electrochemical detection scheme is based on the method that was described in Part I [1]. It features the use of a disposable, environmentally friendly bismuth film electrode to replace the traditionally used (toxic) mercury one while here we report an arduous development of sample treatment so that the simple device can be applied as a screening tool in many settings. For this purpose, a milk pre-treatment procedure by means of wet digestion with HCl, HClO4, and H2O2 combined with an ultrasonic treatment was developed. The detection of lead ions in treated milk was then carried out using a disposable screen-printed electrode modified with Nafion® and an “in situ” bismuth film, with the analysis being performed in anodic stripping voltammetry mode. The analytical method developed allows the detection of milk contaminated with lead ions at a concentration of 20 μg Kg−1 (legal limit) and it can be proposed as a screening method for routine analysis of lead ions in milk with the advantage of employing inexpensive and portable instrumentation. Moreover, dedicated software supported by a portable instrument introduces procedures that are essential to avoid distortion from ambient lead contamination and also makes it possible for an unskilled operator to carry out each step of the analysis.  相似文献   

6.
Three Pt-based catalysts prepared in different radiolytic conditions and supported on graphite powder were packed into a carbon paste electrode configuration. They were compared to each other, to the commercial (Pt) deposited on activated carbon powder (Johnson Matthey) and to pure Vulcan XC-72 for their respective abilities toward the hydrogen evolution reaction (HER). The Tafel parameters were determined for all these electrodes. From the I–V curves and their quantitative treatment, the following order of activity emerged unambiguously and reads: (PtCO)2 (fcc structure) > (PtCO)1 (Chini cluster) > (Pt)neat > (Pt)JM (Johnson Matthey) ≫ (Vulcan XC-72). As expected, all the Pt-loaded electrodes were more efficient than Vulcan XC-72. The classification appears to be linked with the mean nanoparticle size, and for comparable sizes, with the surface morphology of the materials. The results and the stability of the electrodes suggest that the small particle sizes and the good dispersity on the carbon support were maintained during the HER.  相似文献   

7.
This work reports the effect of the incorporation of different proteins within carbon paste electrodes (CPE) modified with electrochemically synthesized magnetite nanoparticles (20 nm) on the electrochemical response towards hydrogen peroxide. Scanning electron microscopy images reveal that the proteins produce a more efficient dispersion of the nanoparticles within the composite. When CPE is modified with 5.0 % w/w magnetite and 5.0 % w/w albumin the sensitivity for hydrogen peroxide at ?0.100 V is enhanced 40 times and the charge transfer resistance significantly decreases. The increase in sensitivity and the decrease in Rct was dependent on the nature of the protein.  相似文献   

8.
Carbon paste electrode modified with aminated Mobil Catalytic Material Number 41 (MCM-41) was prepared and used for immobilization of K3[Fe(CN)6] in acidic medium, and then electrochemical behavior of modified electrode containing ferricyanide was studied in detail, including pH-dependence and scan rate effect. Cyclic voltammetry studies showed that the electrode reaction is a surface-controlled process at the scan rate range from 5 to 60 mV s−1. Also, the electrocatalytic behavior of modified electrode toward the reduction of H2O2 is reported and the effect of pH on catalytic peak current was discussed. According to experimental results, with increasing solution pH, the catalytic effect of this modified electrode is decreased. Catalytic reduction current of H2O2 increases linearly with its concentration. It has been demonstrated that ferricyanide immobilized on the aminated MCM-41 is a stable catalyst for the electrocatalytic reduction of H2O2.  相似文献   

9.
This work offers construction and comparative evaluation the performance characteristics of conventional polymer (I), carbon paste (II) and carbon nanotubes chemically modified carbon paste ion selective electrodes (III) for meclofenoxate hydrochloride are described. These electrodes depend mainly on the incorporation of the ion pair of meclofenoxate hydrochloride with phosphomolybdic acid (PMA) or phosphotungestic acid (PTA). They showed near Nernestian responses over usable concentration range 1.0 × 10−5 to 1.0 × 10−2 M with slopes in the range 55.15–59.74 mV (concentration decade)−1. These developed electrodes were fully characterized in terms of their composition, response time, working concentration range, life span, usable pH and temperature range. The electrodes showed a very good selectivity for Meclo with respect to a large number of inorganic cations, sugars and in the presence of the degradation product of the drug (p-chloro phenoxy acetic acid). The standard additions method was applied to the determination of MecloCl in pure solution, pharmaceutical preparations and biological samples. Dissolution testing was also applied using the proposed sensors.  相似文献   

10.
Svancara I  Foret P  Vytras K 《Talanta》2004,64(4):844-852
A procedure for the determination of chromium is described based on synergistic pre-concentration of the chromate anion at a carbon paste electrode modified in situ with quarternary ammonium salts such as 1-ethoxycarbonylpentadecyltrimethylammonium bromide (Septonex®), cetyltrimethylammonium bromide (CTAB) or cetylpyridinium bromide (CPB). The proper electrochemical detection utilises the reduction Cr(VI) → Cr(III) performed in the differential pulse cathodic voltammetric mode. In discussion, considerable attention has been paid to the accumulation mechanism at the carbon paste electrode in the presence of surfactants. Furthermore, after optimising the corresponding experimental conditions (0.1-0.3 M HCl + 0.1 M NaCl as the supporting electrolyte, 2.5-25 μM as the total concentration of modifier, pre-concentration at +0.7 V versus Ag/AgCl and the stripping from +0.7 to −0.4 V), the analytical performance of the method has been evaluated. The signal of interest was reproducible within ±8% and proportional to the concentration in a range of 0.5-50 μM CrO42−, with a limit of detection (S/N = 3:1) of about 5×10−8 M CrO42− (with accumulation for 300 s). Interference studies were focused mainly on the species capable of forming ion-pairs with the modifier; i.e., TlCl4, AuCl4, PdCl42−, PtCl62−, VO43−, MnO4 and I. Practical applicability of the method was tested on model solutions via the recovery rates (typically 90-110%) or using selected certified reference materials (tea, bush leaves, clover) and two samples of black tea when the respective results were compared to those obtained by the reference determinations with ICP-AES.  相似文献   

11.
The bismuth film is a great promise as a suitable material to replace the mercury electrodes due to its low toxicity and good cathodic potential range. This work studies the influence of the electrodeposition conditions in the morphology and electroanalytical performance of the bismuth film electrodeposited onto copper electrode. The bismuth films were obtained in nitric or hydrochloric acid solutions with and without the presence of sodium citrate. The films were characterized by field emission scanning electron microscopy (FE‐SEM) and scanning electron microscopy with energy dispersive X‐ray spectrometry (SEM‐EDX). The microscopic analysis of the bismuth film obtained in HCl solution with sodium citrate (BIFE‐Cit) showed more homogeneous structure with higher content of bismuth than the film obtained in HCl only (BiFE‐HCl). The BiFE‐Cit exhibited a better analytical performance for lead with good adherence to the copper substrate.  相似文献   

12.
《Electroanalysis》2004,16(5):391-398
Electrochemical batch cells with mercury drop electrodes, MDEs, are readily available from a number of producers and widely used in electroanalysis for polarography, voltammetry and stripping voltammetry. To increase sample throughput and reduce reagent and sample consumption, the tendency is to couple the MDE with flow analysis systems (e.g., FIA, SIA or BIA). Many special flow cells for MDEs are described in the literature, but it is easier to convert existing commercial batch cells to flow operation. To assess the performance of such flow adaptors, four models were chosen because they are directly fitted to the glass capillary of any MDE, light enough not to impair the mechanical drop knocker and can be effortlessly built in the laboratory. They were all found adequate for flow amperometry and stripping voltammetry, with differences in sensitivity, flow rate dependence, response time, drop stability, tolerance to bubbles, uncompensated resistance and recontamination of disposed analyte from the electrolytic bath. Two of them, a simple L‐shaped PTFE tube and an upstream nozzle holder made from a disposable pipette tip, gather a larger set of desirable features.  相似文献   

13.
An adsorptive stripping voltammetric (AdSV) procedure for simultaneous determination of Ni(II) and Co(II) in the presence of nioxime as a complexing agent at an in situ plated lead film electrode was described. The Co(II) signal was enhanced by exploitation of the catalytic process in the presence of nitrite. Ni(II) and Co(II) signals are better separated than in the case of bismuth film electrodes. Calibration graphs for an accumulation time of 120 s are linear from 1 × 10−9 to 1 × 10−7 mol L−1 and from 1 × 10−10 to 5 × 10−9 mol L−1 for Ni(II) and Co(II), respectively. The proposed procedure was applied for Ni(II) and Co(II) determination in water certified reference materials.  相似文献   

14.
This work reports the advantages of carbon paste electrodes modified with electrogenerated magnetite nanoparticles. The nanoparticles present catalytic activity towards hydrogen peroxide reduction. The incorporation of glucose oxidase (GOx) and magnetite in a carbon paste matrix have made possible the development of an efficient glucose biosensor. The effect of the amount of GOx and magnetite present in the composite on the response of the biosensor was critically evaluated. The biosensors demonstrated to be highly selective, with negligible interference of ascorbic acid and uric acid. The proposed biosensor was challenged with human blood serum demonstrating an excellent correlation with the spectrophotometric method.  相似文献   

15.
A novel sensor based on carbon black‐gold nanoparticle nanocomposite modified screen‐printed electrode (CB‐AuNPs/SPE) for the detection of As(III) has been developed. The sensor was prepared modifying the SPE with CB and AuNPs by a drop casting automatable deposition. The As(III) was detected by CB‐AuNPs/SPE using anodic stripping voltammetry, with a high sensitivity (673±6 µA µM?1 cm?2) and reaching a LOD of 0.4 ppb. Finally, CB‐AuNPs/SPE has been applied to As(III) trace analysis in drinking water, obtaining satisfactory recovery values (99±9 %).  相似文献   

16.
This paper presents the first example of a pharmaceutical application of droplet-based microfluidics coupled with chronoamperometric detection using chip-based carbon paste electrodes (CPEs) for determination of dopamine (DA) and ascorbic acid (AA). Droplets were generated using an oil flow rate of 1.80 μL min−1, whereas a flow rate of 0.80 μL min−1 was applied to the aqueous phase, which resulted in a water fraction of 0.31. The optimum applied potential for chronoamperometric measurements in droplets was found to be 150 mV. Highly reproducible analysis of DA and AA was achieved with relative standard deviations of less than 5% for both intra-day and inter-day measurements. The limit of detection (LOD) and limit of quantitation (LOQ) were found to be 20 and 70 μM for DA and 41 and 137 μM for AA, respectively. Linearity of this method was in the ranges of 0.02–3.0 mM for DA and 0.04–3.0 mM for AA. This system was successfully applied to determine the amounts of DA and AA in intravenous drugs. Calibration curves of DA and AA for quantitative analysis were obtained with good linearity with R2 values of 0.9984 and 0.9988, respectively. Compared with the labeled amounts, the measured concentrations of DA and AA obtained from this system were insignificantly different, with error percentages of less than ±3.0%, indicating a high accuracy of the developed method.  相似文献   

17.
Bismuth films deposited in situ at glassy carbon and carbon film electrodes were tested for the determination of traces of Tl(I) separately and together with Zn(II) and Pb (II), in acetate buffer solution pH 3.7, using square wave anodic stripping voltammetry. Electrochemical impedance spectra in the presence of Tl(I) showed differences between the electrode substrates. The sensitivity to Tl does not depend on the presence of other ions, and was better at carbon film electrodes, although the 2 nmol L?1 detection limit was independent of electrode substrate. Application to the measurement of Tl(I) in commercial berry juice is demonstrated.  相似文献   

18.
A multiplexed electrochemical immunoassay method was developed for simultaneous ultrasensitive measurement of tumor markers based on electrochemical stripping analysis of silver nanoparticles (Ag NPs). The Ag NPs were deposited on a disposable immunosensor array with a reduction reaction catalyzed by nanogold labels. The immunosensor array was prepared by covalently immobilizing capture antibodies on chitosan modified screen-printed carbon electrodes. Through a sandwich-type immunoreaction, antibody-functionalized Au NPs were captured onto immunosensor surface to induce the silver deposition from a silver enhancer solution. The deposited Ag NPs could be directly measured by anodic stripping analysis in KCl solution. The catalytic deposition enhanced the analytical sensitivity for detection of protein markers. The interference of dissolved oxygen could be avoided as the detection was performed with positive stripping potential range. Using carcinoembryonic antigen and α-fetoprotein as model analytes, the proposed multiplexed immunoassay method showed wide linear ranges of three orders of magnitude with the detection limits down to 3.5 and 3.9 pg mL−1, respectively. The localized silver deposition, as well as the stripping detection process, eliminated completely the electrochemical cross talk between adjacent immunosensors. The immunosensor array exhibited acceptable reproducibility, stability and accuracy, showing a promising potential in multianalyte determination for clinical application.  相似文献   

19.
Both screen‐printed electrodes modified with a dispersion of carbon black (CB) and solid paste electrodes prepared using a nanostructured CB were developed and characterized. Indeed, increasing the peak currents and/or their shifting to negative potentials were observed, exhibiting efficient electrocatalytic activity towards nitrite oxidation with high sensitivity and low detection limit. Solid carbon paste electrodes (SCPEs) and solid carbon black paste electrodes (SCBPEs) were challenged in amperometric mode with nitrite since detection limit reached is 65 and 5 nM respectively. Nitrate was first reduced to nitrite in reductor column, then detected on SCBPEs. Nitrate and nitrite were determined in real samples.  相似文献   

20.
Electrochemical detection of hydrogen peroxide using an edge-plane pyrolytic-graphite electrode (EPPG), a glassy carbon (GC) electrode, and a silver nanoparticle-modified GC electrode is reported. It is shown, in phosphate buffer (0.05 mol L–1, pH 7.4), that hydrogen peroxide cannot be detected directly on either the EPPG or GC electrodes. However, reduction can be facilitated by modification of the glassy-carbon surface with nanosized silver assemblies. The optimum conditions for modification of the GC electrode with silver nanoparticles were found to be deposition for 1 min at –0.5 V vs. Ag from 5 mmol L–1 AgNO3/0.1 mol L–1 TBAP/MeCN, followed by stripping for 2 min at +0.5 V vs. Ag in the same solution. A wave, due to the reduction of hydrogen peroxide on the silver nanoparticles is observed at –0.68 V vs. SCE. The limit of detection for this modified nanosilver electrode was 2.0×10–6 mol L–1 for hydrogen peroxide in phosphate buffer (0.05 mol L–1, pH 7.4) with a sensitivity which is five times higher than that observed at a silver macro-electrode. Also observed is a shoulder on the voltammetric wave corresponding to the reduction of oxygen, which is produced by silver-catalysed chemical decomposition of hydrogen peroxide to water and oxygen then oxygen reduction at the surface of the glassy-carbon electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号