首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel representation is described that models some important NP-hard problems, such as the propositional satisfiability problem (SAT), the Traveling Salesperson Problem (TSP), the Quadratic Assignment Problem (QAP), and the Minimal Set Covering Problem (MSCP) by means of only two types of constraints: ‘choice constraints’ and ‘exclusion constraints’. In its main section the paper presents an approach for solving an m-CNF-SAT problem (Conjunctive Normal Form Satisfaction: n variables, p clauses, clause length m) by integer programming. The approach is unconventional, because 2n distinct 0–1 variables are used for each clause of the m-CNF-SAT problem. The constraint matrix A forces that for every clause exactly one 0–1 variable is set equal to 1 (choice constraint), and no two 0–1 variables, representing a literal and its complement, are both set equal to 1 (exclusion constraints). The particular m-CNF-SAT instance is coded in a cost vector, which serves for maximization of the number of satisfied clauses. The paper presents a modification of the Simplex for solving the obtained integer program. A main theorem of the paper is that this algorithm always finds a 0–1 integer solution. A solution of the integer program corresponds to a solution of the m-CNF-SAT and vice versa. The results of significant experimental tests are reported, and the procedure is compared to other approaches. The same modelling technique is then used for the Traveling Salesperson Problem, for the Minimal Set Covering, and for the Quadratic Assignment Problem: it is shown that a uniform approach is thus useful.  相似文献   

2.
M. Oswald  G. Reinelt  H. Seitz 《TOP》2009,17(1):158-170
The linear ordering problem consists of finding an ordering of the nodes of the weighted complete digraph on n nodes such that the sum of the weights of the arcs compatible with the ordering is maximized. In this paper, we report about the usefulness of mod-k cuts in a branch-and-cut algorithm for solving linear ordering problems to optimality.   相似文献   

3.
Good scaling is an essential requirement for the good behavior of many numerical algorithms. In particular, for problems involving multivariate polynomials, a change of scale in one or more variable may have drastic effects on the robustness of subsequent calculations. This paper surveys scaling algorithms for systems of polynomials from the literature, and discusses some new ones, applicable to arbitrary polynomial constraint satisfaction problems.  相似文献   

4.
We determine under which conditions certain natural models of random constraint satisfaction problems have sharp thresholds of satisfiability. These models include graph and hypergraph homomorphism, the (d,k,t)‐model, and binary constraint satisfaction problems with domain size three. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

5.
We study threshold phenomena for a large class of random constraint satisfaction problems over finite domains. Our main contribution is a complete classification of the nature (sharp or coarse) of the SAT-UNSAT transition for random Boolean CSPs, which is based on easily decidable properties.  相似文献   

6.
Dynamic constraint aggregation (DCA) and dual variable stabilization (DVS) are two methods that can reduce the negative impact of degeneracy when solving linear programs. The first uses a projection to reduce the primal space whereas the second acts in the dual space. In this paper, we develop a new method, called stabilized dynamic constraint aggregation (SDCA), that combines DCA and DVS for solving set partitioning problems. It allows to fight degeneracy from both primal and dual perspectives simultaneously. To assess the effectiveness of SDCA, we report computational results obtained for highly degenerate multi-depot vehicle scheduling problem instances solved by column generation. These results indicate that SDCA can reduce the average computational time of the master problem by a factor of up to 7 with respect to the best of the two combined methods. Furthermore, they show that its performance is robust with regard to increasing levels of degeneracy in test problems.  相似文献   

7.
We investigate the complexity of finding solutions to infinite recursive constraint satisfaction problems. We show that, in general, the problem of finding a solution to an infinite recursive constraint satisfaction problem is equivalent to the problem of finding an infinite path through a recursive tree. We also identify natural classes of infinite recursive constraint satisfaction problems where the problem of finding a solution to the infinite recursive constraint satisfaction problem is equivalent to the problem of finding an infinite path through finitely branching recursive trees or recursive binary trees. There are a large number of results in the literature on the complexity of the problem of finding an infinite path through a recursive tree. Our main result allows us to automatically transfer such results to give equivalent results about the complexity of the problem of finding a solution to a recursive constraint satisfaction problem.  相似文献   

8.
X. B. Li  Z. Lin  Z. Y. Peng 《Optimization》2016,65(8):1615-1627
In this paper, we first discuss the Painlevé–Kuratowski set convergence of (weak) minimal point set for a convex set, when the set and the ordering cone are both perturbed. Next, we consider a convex vector optimization problem, and take into account perturbations with respect to the feasible set, the objective function and the ordering cone. For this problem, by assuming that the data of the approximate problems converge to the data of the original problem in the sense of Painlevé–Kuratowski convergence and continuous convergence, we establish the Painlevé–Kuratowski set convergence of (weak) minimal point and (weak) efficient point sets of the approximate problems to the corresponding ones of original problem. We also compare our main theorems with existing results related to the same topic.  相似文献   

9.
The lexicographically-ordered CSP (“lexicographic CSP” or “LO-CSP” for short) combines a simple representation of preferences with the feasibility constraints of ordinary CSPs. Preferences are defined by a total ordering across all assignments, such that a change in assignment to a given variable is more important than any change in assignment to any less important variable. In this paper, we show how this representation can be extended to handle conditional preferences in two ways. In the first, for each conditional preference relation, the parents have higher priority than the children in the original lexicographic ordering. In the second, the relation between parents and children need not correspond to the importance ordering of variables. In this case, by obviating the “overwhelming advantage” effect with respect to the original variables and values, the representational capacity is significantly enhanced. For problems of the first type, any of the algorithms originally devised for ordinary LO-CSPs can also be used when some of the domain orderings are dependent on assignments to “parent” variables. For problems of the second type, algorithms based on lexical orders can be used if the representation is augmented by variables and constraints that link preference orders to assignments. In addition, the branch-and-bound algorithm originally devised for ordinary LO-CSPs can be extended to handle CSPs with conditional domain orderings.  相似文献   

10.
This paper presents an hybrid search method for solving on-line optimization problems that are modelled using the vcspValued Constraint Satisfaction Problems framework. To each constraint is associated a valuation representing the “cost to pay” when this constraint will be violated by a solution. Our method (VNS/LDS+CP) uses principles of VNS (Variable Neighborhood Search) and combines a partial tree search (Limited Discrepancy Search) with Constraint Propagation in order to compute local optima. Experiments on the CELAR benchmarks demonstrate significant improvements on other competing methods: LNS/CP/GR [Lobjois, L., Lemaitre, M., Verfaillie, G., 2000. Large neighbourhood search using constraint propagation and greedy reconstruction for valued csp resolution. In: Proceedings of the ECAI2000 Workshop on Modelling and Solving Problems with Constraints], another hybrid method using vcsps, and two standard versions of Simulated-Annealing [Li, Y.H., 1997. Directed annealing search in constraint satisfaction and optimization. Ph.D. thesis, Imperial College of Science, Department of Computing]: Quick and Medium. Moreover, VNS/LDS+CP clearly satisfies the key properties of anytime algorithms. Finally, VNS/LDS+CP has been successfully applied to a real-life on-line resource allocation problem in computer networks.  相似文献   

11.
According to Cordeau et al. (J Oper Res Soc 53(5):512–522, 2002) a good VRP heuristic should fulfill four criteria: accuracy, speed, simplicity, and flexibility. In this paper we report experience with a heuristic framework for solving rich vehicle routing problems (RVRP), which is based on rather simple heuristics. This heuristic framework has been implemented as flexible software framework. The user-friendly design enables flexible customization of problem-specific solvers. Our computational study on five RVRP reveals that the heuristic approach is rather robust with respect to parameterization and that the solvers which have been customized from the framework can compete with state-of-the-art special purpose developments.  相似文献   

12.
We study two natural models of randomly generated constraint satisfaction problems. We determine how quickly the domain size must grow with n to ensure that these models are robust in the sense that they exhibit a non‐trivial threshold of satisfiability, and we determine the asymptotic order of that threshold. We also provide resolution complexity lower bounds for these models. One of our results immediately yields a theorem regarding homomorphisms between two random graphs. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

13.
《Optimization》2012,61(5):597-627
Our main concern in this article are concepts of nondominatedness w.r.t. a variable ordering structure introduced by Yu [P.L. Yu, Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives, J. Optim. Theory Appl. 14 (1974), pp. 319–377]. Our studies are motivated by some recent applications e.g. in medical image registration. Restricting ourselves to the case when the values of a cone-valued map defining the ordering structure are Bishop–Phelps cones, we obtain for the first time scalarizing functionals for nondominated elements, Fermat rule, Lagrange multiplier rule and duality results for a single- or set-valued vector optimization problem with a variable ordering structure.  相似文献   

14.
15.
In this paper, we investigate vector complementarity problems with a variable ordering relation. We establish existence results of a solution of a vector complementarity problem under an inclusive type condition. We obtain equivalence results among a vector complementarity problem, a vector variational inequality problem and other related problems.  相似文献   

16.
Our model is a generalized linear programming relaxation of a much studied random K-SAT problem. Specifically, a set of linear constraints on K variables is fixed. From a pool of n variables, K variables are chosen uniformly at random and a constraint is chosen from also uniformly at random. This procedure is repeated m times independently. We are interested in whether the resulting linear programming problem is feasible. We prove that the feasibility property experiences a linear phase transition, when n and m = cn for a constant c. Namely, there exists a critical value c* such that, when c < c*, the problem is feasible or is asymptotically almost feasible, as n, but, when c>c*, the distance to feasibility is at least a positive constant independent of n. Our result is obtained using the combination of a powerful local weak convergence method developed in Aldous [Ald92], [Ald01], Aldous and Steele [AS03], Steele [Ste02] and martingale techniques. By exploiting a linear programming duality, our theorem implies the following result in the context of sparse random graphs G(n, cn) on n nodes with cn edges, where edges are equipped with randomly generated weights. Let (n, c) denote maximum weight matching in G(n, cn). We prove that when c is a constant and n , the limit limn (n, c)/n, exists, with high probability. We further extend this result to maximum weight b-matchings also in G(n, cn).  相似文献   

17.
A combinatorial constraint satisfaction problem aims at expressing in unified terms a wide spectrum of problems in various branches of mathematics, computer science, and AI. The generalized satisfiability problem is NP-complete, but many of its restricted versions can be solved in a polynomial time. It is known that the computational complexity of a restricted constraint satisfaction problem depends only on a set of polymorphisms of relations which are admitted to be used in the problem. For the case where a set of such relations is invariant under some Mal’tsev operation, we show that the corresponding constraint satisfaction problem can be solved in a polynomial time. __________ Translated from Algebra i Logika, Vol. 45, No. 6, pp. 655–686, November–December, 2006.  相似文献   

18.
Annals of Operations Research - Construction heuristics play an important role in solving combinatorial optimization problems. These heuristics are usually used to create an initial solution to the...  相似文献   

19.
Logic programming languages, such asProlog, allow a declarative specification of Constraint Satisfaction Problems (CSPs), freeing the user from specifying more or less complex control directives. However, the price to pay for such flexibility is a loss of efficiency, which makes Logic Programming inadequate to solve CSPs of even moderate size and complexity. To extend the range of applicability of logic programming, several improvements have been proposed. The use of heuristics is one such improvement. Although this usually forces the user to specify some form of control (thus abandoning the pure declarative nature of a logic program), these specifications can be made declarative by making use of some appropriate meta-predicates. Another extension to logic programming that improves its efficiency, is the active use of constraints, as done in the various formulations of constraint logic programming languages. In particular, the use of finite domains is quite adequate to implement look-ahead schemes to efficiently solve several types of CSPs. In this paper, we discuss the complementary nature of heuristics and look-ahead schemes and present a constraint logic programming framework that integrates both these techniques. Results obtained with a time-tabling problem executed on a prototype that implements such a framework are presented, and show that significant efficiency improvements can be achieved when compared with the separate use of the two techniques.  相似文献   

20.
Song  Xiongfeng  Xu  Wei  Hayami  Ken  Zheng  Ning 《Numerical Algorithms》2020,85(2):737-761
Numerical Algorithms - The variable projection method is a classical and efficient method for solving separable nonlinear least squares (SNLLS) problems. However, it is hard to handle the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号