首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bisphenol A (BPA) imprinted sponge mesoporous silica was synthesized using a combination of semi-covalent molecular imprinting and simple self-assembly process. The molecularly imprinted sponge mesoporous silica (MISMS) material obtained was characterized by FT-IR, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption measurements. The results show that the MISMS possessed a large specific surface area (850.55 m2 g−1) and a highly interconnected 3-D porous network. As a result, the MISMS demonstrated a superior specific adsorption capacity of 169.22 μmol g−1 and fast adsorption kinetics (reaching equilibrium within 3 min) for BPA. Good class selectivity for BPA and its analogues (bisphenol F, bisphenol B, bisphenol E and bisphenol AF) was also demonstrated by the sorption experiment. The MISMS as solid-phase extraction (SPE) material was then evaluated for isolation and clean-up of these bisphenols (BPs) from sediment samples. An accurate and sensitive analytical method based on the MISMS–SPE coupled with HPLC–DAD has been successfully established for simultaneous determination of five BPs in river sediments with detection limits of 0.43–0.71 ng g−1 dry weight (dw). The recoveries of BPs for lyophilizated sediment samples at two spiking levels (50 and 500 ng g−1 dw for each BP) were in the range of 75.5–105.5% with RSD values below 7.5%.  相似文献   

2.
The bisphenol A (BPA) imprinted polymer microspheres were prepared by simple Pickering emulsion polymerization. Compared to traditional bulk polymerization, both high yields of polymer and good control of particle sizes were achieved. The characterization results of scanning electron microscopy and nitrogen adsorption–desorption measurements showed that the obtained molecularly imprinted polymer microsphere (MIPMS) particles possessed regular spherical shape, narrow diameter distribution (30–60 μm), a specific surface area (SBET) of 281.26 m2 g−1 and a total pore volume (Vt) of 0.459 cm3 g−1. Good specific adsorption capacity for BPA was obtained in the sorption experiment and good class selectivity for BPA and its seven structural analogs (bisphenol F, bisphenol B, bisphenol E, bisphenol AF, bisphenol S, bisphenol AP and bisphenol Z) was demonstrated by the chromatographic evaluation experiment. The MIPMS as solid-phase extraction (SPE) packing material was then evaluated for extraction and clean-up of these bisphenols (BPs) from human urine samples. An accurate and sensitive analytical method based on the MIPMS-SPE coupled with HPLC-DAD has been successfully established for simultaneous determination of eight BPs from human urine samples with detection limits of 1.2–2.2 ng mL−1. The recoveries of BPs for urine samples at two spiking levels (100 and 500 ng mL−1 for each BP) were in the range of 81.3–106.7% with RSD values below 8.3%.  相似文献   

3.
Xiaoman Jiang  Mancang Liu 《Talanta》2007,72(1):119-125
A novel and simple imprinted amino-functionalized silica gel material was synthesized by combining a surface molecular imprinting technique with a sol-gel process on the supporter of activated silica gel for solid-phase extraction-high performance liquid chromatography (SPE-HPLC) determination of bisphenol A (BPA). Non-imprinted silica sorbent was synthesized without the addition of BPA using the same procedure as that of BPA-imprinted silica sorbent. The BPA-imprinted silica sorbent and non-imprinted silica sorbent were characterized by FT-IR and the static adsorption experiments. The prepared BPA-imprinted silica sorbent showed high adsorption capacity, significant selectivity and good site accessibility for BPA. The maximum static adsorption capacity of the BPA-imprinted and non-imprinted silica sorbent for BPA was 68.9 and 34.0 mg g−1, respectively. The relatively selective factor value of this BPA-imprinted silica sorbent was 4.5. Furthermore, the difference of the retention characteristics of BPA on the C8 SPE column and BPA-imprinted silica SPE (MIP-SPE) was compared. The MIP-SPE-HPLC method showed higher selectivity to BPA than the traditional SPE-HPLC method. At last, the BPA-imprinted polymers were used as the sorbent in solid-phase extraction to determine BPA in water samples with satisfactory recovery higher than 99% (R.S.D. 3.7%).  相似文献   

4.
以双酚A为模板分子,3-氨基丙基乙氧基硅烷为功能单体,通过溶胶-凝胶反应合成双酚A分子印迹纳米硅胶微球。以印迹微球为固相萃取吸附剂,优化固相萃取条件,确定二氯甲烷为上样溶剂。固相萃取选择性实验表明,在双酚A及其结构类似物四溴双酚A、双酚C、壬基酚的混合物溶液中,印迹萃取柱对双酚A具有良好的选择性能,回收率达到90.7%。浓度为2.5和5μmol/L的加标罐装食品样品,经印迹萃取柱预处理,液相色谱检测得到回收率72%~84%,相对标准偏差2.9%~4.4%。  相似文献   

5.
The purpose of this study was to develop an analytical method for determination of bisphenol A (BPA) from fruits and vegetables. The present method developed for extraction of BPA from samples was based on solid-phase extraction (SPE) method and solvent extraction. Recovery results in the samples spiked with a 10 ng/ml BPA [no detection (<1 ng/g) to 77%] were lower than those in the samples with a 50 ng/ml BPA (26-96%). The fact that the low recovery results were caused by BPA degradation by enzymes is found. These problems were proved by the pH (pH ≤3) and the heating treatment (at ≥80 °C for 5 min). However, because the heating treatment at temperatures of ≥80 °C for 5 min is more difficult and time-consuming method than the pH control, we suggest that the pH control is useful to prevent BPA degradation. Good recovery results (82-101%) were obtained from all fruit and vegetable samples after pH treatment (pH ≤3). Effective elimination of impurities and a good detection limit (1 ng/g) were obtained with a method involving two SPE cartridges (OASIS HLB and Sep-Pak Florisil cartridge).  相似文献   

6.
A novel multi-templates molecularly imprinted polymer (MIP), using acidic pharmaceuticals mixture (ibuprofen (IBP), naproxen (NPX), ketoprofen (KEP), diclofenac (DFC), and clofibric acid (CA)) as the template, was prepared as solid-phase extraction (SPE) material for the quantitative enrichment of acidic pharmaceuticals in environmental samples and off-line coupled with liquid chromatography–mass spectrometry (LC/MS/MS). Washing solvent was optimized in terms of kind and volume for removing the matrix constituents nonspecifically adsorbed on the MIP. When 1 L of water sample spiked at 1 μg/L was loaded onto the cartridge, the binding capacity of the MIP cartridge were 48.7 μg/g for KEP, 60.7 μg/g for NPX, 52 μg/g for CA, 61.3 μg/g for DFC and 60.7 μg/g for IBP, respectively, which are higher than those of the commercial single template MIP in organic medium (e.g. toluene) reported in the literature. Recoveries of the five acidic pharmaceuticals extracted from 1 L of real water samples such as lake water and wastewater spiked at 1 μg/L were more than 95%. The recoveries of acidic pharmaceuticals extracted from 10-g sediment sample spiked at the 10 ng/g level were in the range of 77.4–90.6%. To demonstrate the potential of the MIP obtained, a comparison with commercial C18 SPE cartridge was performed. Molecularly imprinted solid-phase extraction (MISPE) cartridge showed higher recoveries than commercial C18 SPE cartridge for acidic pharmaceuticals. These results showed the suitability of the MISPE method for the selective extraction of a group of structurally related compounds such as acidic pharmaceuticals.  相似文献   

7.
A pseudo template molecularly imprinted polymer (MIP) was prepared for methotrexate (MTX) and a RP-HPLC method combined with the MIP was developed for the determination of MTX in human serum. Because of the poor solubility of MTX in common MIP preparation solvents, trimethoprim (TMP), a molecule having the similar imprinting sites as MTX, is selected as the pseudo template. The MIP was prepared using methacrylic acid (MAA) and ethylene glycol dimethacrylate as functional monomer and cross-linker, respectively. 1H NMR study showed highly strong interaction between TMP and MAA with hydrogen bonds. Chromatographic behaviors indicated that the TMP-MIP possessed excellent affinity and selectivity for MTX. And the imprinting factor for MTX was high up to 9.5 when 7:3 of acetonitrile:methanol (v/v) was used as mobile phase. Moreover, TMP-MIP was used as the solid-phase extraction (SPE) material to enrich the target compound MTX in human serum samples for HPLC analysis. The SPE process was carefully optimized and good recoveries of MTX were obtained as 81.6–86.2% with RSD of 0.22–1.84% when the spiked concentration of MTX was 2.0–10.0 μg mL−1 in human serum samples. The results indicated that the pseudo template MIP can be applied to preconcentration, purification and analysis of MTX in clinic samples.  相似文献   

8.
The highly selective, fast and effective sample pretreatment technique molecularly imprinted solid-phase extraction (MISPE) can overcome the low sensitivity of the highly efficient capillary electrophoresis-UV method (CE-UV). In this work, narrowly dispersible bisphenol A (BPA)-imprinted polymeric microspheres with a high capacity factor of k′ = 6.8 and an imprinted factor of I = 6.53 were investigated as selective solid-phase extraction (SPE) sorbents for use in extraction of BPA from different sample matrices (tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine). Washing and eluting protocols of MISPE were optimized. Under optimal conditions, recoveries of MISPE were investigated. Recoveries were basically constant and the relative standard deviation (RSD) was lower than 5.8% when loading volumes changed from 1 to 50 mL. Recoveries ranged from 71.20% to 86.23% for different sample matrices. Compared with C18 SPE, MISPE had higher selectivity and recovery for BPA. BPA was determined with good accuracy and precision in different complex samples using CE-UV coupled with MISPE. Spiked recoveries ranged from 95.20% to 105.40%, and the RSD was less than 7.2%. Because a large loading volume was achieved, the enrichment efficiency of pretreatment and the sensitivity of this method were improved. The limits of detection of this MISPE-CE-UV method for BPA in tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine were 3.0 μg L− 1, 5.4 μg L− 1, 6.9 μg L− 1, 2.1 μg L− 1, 1.8 μg L− 1 and 84 μg L− 1, respectively.  相似文献   

9.
Rezaei B  Jafari MT  Rahmanian O 《Talanta》2011,83(3):765-769
In this research, selective separation and determination of phenazopyridine (PAP) is demonstrated using molecular imprinted polymer (MIP) coupled with electrospray ionization ion mobility spectrometry (ESI-IMS). In the non-covalent approach, selective MIP produced using PAP and methacrylic acid (MAA) as a template molecule and monomer, respectively. The created polymer is utilized as a media for solid-phase extraction (SPE), revealing selective binding properties for the analyte from pharmaceutical and serum samples. A coupled MIP-IMS makes it possible to quantitize PAP in the range of 1-100 ng mL−1 and with a 0.2 ng mL−1 detection limit. Furthermore, the MIP selectivity is evaluated by application of some substances with analogous and different molecular structures to that of PAP. This method is successfully applied for the determination of PAP in pharmaceutical and serum samples.  相似文献   

10.
Highly selective molecularly imprinted layer-coated silica nanoparticles for bisphenol A (BPA) were synthesized by molecular imprinting technique with a sol-gel process on the supporter of silica nanoparticles. The BPA-imprinted silica nanoparticles were characterized by fourier transform infrared spectrometer, transmission electron microscope, dynamic adsorption and static adsorption tests. The equilibrium association constant, Ka, and the apparent maximum number of binding sites, Qmax, were estimated to be 1.25 × 105 mL μmol−1 and 16.4 μmol g−1, respectively. The BPA-imprinted silica nanoparticles solid-phase extraction (SPE) column had higher selectivity for BPA than the commercial C18-SPE column. The results of the study indicated that the prepared BPA-imprinted silica nanoparticles exhibited high adsorption capacity and selectivity, and offered a fast kinetics for the rebinding of BPA. The BPA-imprinted silica nanoparticles were successfully used in SPE to selectively enrich and determine BPA from shampoo, bath lotion and cosmetic cream samples.  相似文献   

11.
The purpose of this study is to establish an easy and accurate method for the determination of bisphenol A (BPA) in the human serum. The samples were applied to the C18 solid phase extraction (SPE) column for clean up of samples. The BPA is conjugated with tetrabutylammonium hydrogen sulfate as the counter ion in alkali solution. The ion paired BPA is moves from the aqueous phase to the organic phase as an ion paired extraction. BPA extracted from human serum were derivatized with pentafluorobenzyl bromide (PFBBr). The derivative was analyzed by gas chromatography (GC)/mass spectrometry (MS) using negative chemical ionization (NCI). The instrumental detection limit of BPA was 5 pg/ml (10 fg). The instrumental response between 0.01 and 100 pg/ml of BPA standards was linear (r2=0.998). The recovery of BPA spiked into human serum was 101.0±4.63 (1 pg/ml) and 100.9±3.75 (10 pg/ml), respectively. The concentration of BPA in the human serum from 20 individuals was 0.54 pg/ml.  相似文献   

12.
A bisphenol A (BPA) molecularly imprinted polymer, the composition of which was optimised using a chemometric approach, has been applied to the selective preconcentration of the template from aqueous samples. The selectivity of the polymer toward BPA and related compounds was evaluated chromatographically. The BPA-imprinted polymer was packed in a column and used for continuous on-column solid-phase extraction (MISPE) of aqueous samples followed by subsequent analysis by HPLC with fluorescence detection of the eluted fractions. The composition of the washing solvent applied in the MISPE procedure was optimised to favour the specific interactions of the MIP with BPA and to remove the non-selectively bound matrix components. The MISPE method has proven to be effective for selective preconcentration of BPA in aqueous samples (recoveries >84% obtained in the eluate for 10–100 mL sample volumes) enabling detection and quantification limits of 1.0 and 3.3 ng mL–1, respectively (based on 25 mL sample size). Analytical recoveries were between 92 and 101% for river water samples spiked with known amounts of BPA (30, 60, and 80 ng mL–1); relative standard deviations (RSD) were lower than 5.0%.  相似文献   

13.
A molecularly imprinted polymer (MIP) designed to enable the selective extraction of carbamazepine (CBZ) from effluent wastewater and urine samples has been synthesised using a non-covalent molecular imprinting approach. The MIP was evaluated chromatographically in the first instance and its affinity for CBZ also confirmed by solid-phase extraction (SPE). The optimal conditions for SPE consisted of conditioning of the cartridge using acidified water purified from a Milli-Q system, loading of the sample under basic aqueous conditions, clean-up using acetonitrile and elution with methanol. The attractive molecular recognition properties of the MIP gave rise to good CBZ recoveries (80%) when 100 mL of effluent water spiked with 1 μg L−1 was percolated through the polymer. For urine samples, 2 mL samples spiked with 2.5 μg L−1 CBZ were extracted with a recovery of 65%. For urine, the linear range was 0.05-24 mg L−1, the limit of detection was 25 μg L−1 and precision, expressed as relative standard deviation at 0.5 mg L−1 (n = 3), was 3.1% and 12.6% for repeatability and reproducibility between days, respectively.  相似文献   

14.
Molecularly imprinted polymers (MIPs) were prepared using bisphenol A (BPA) as a template by precipitation polymerization. The polymer that had the highest binding selectivity and ability was used as solid-phase extraction (SPE) sorbents for direct extraction of BPA from different biological and environmental samples (human serum, pig urine, tap water and shrimp). The extraction protocol was optimized and the optimum conditions were as follows: conditioning with 5 mL methanol–acetic acid (3:1), 5 mL methanol, 5 mL acetonitrile and 5 mL water, respectively, loading with 5 mL aqueous samples, washing with 1 mL acetonitrile, and eluting with 3 mL methanol. MIPs can selectively recognize, effectively trap and preconcentrate BPA over a concentration range of 2–20 μM. Recoveries ranged from 94.03 to 105.3 %, with a relative standard deviation lower than 7.9 %. Under the optimal condition, molecularly imprinted SPE recoveries of spiked human serum, pig urine, tap water and shrimp were 65.80, 82.32, 76.00 and 75.97 %, respectively, when aqueous samples were applied directly. Compared with C18 SPE, a better baseline, better high-performance liquid chromatography separation efficiency and higher recoveries were achieved after molecularly imprinted SPE.   相似文献   

15.
A magnetic molecularly imprinted polymer (M-MIP) of bisphenol A (BPA) was prepared by miniemulsion polymerization. The morphological and magnetic characteristics of the M-MIP were characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometry. The adsorption capacities of the M-MIP and the nonimprinted polymer were investigated using static adsorption tests, and were found to be 390 and 270 mg g−1, respectively. Competitive recognition studies of the M-MIP were performed with BPA and the structurally similar compound DES, and the M-MIP displayed high selectivity for BPA. A method based on molecularly imprinted solid-phase extraction assisted by magnetic separation was developed to extract BPA from environmental water and milk samples. Various parameters such as the mass of sorbent, the pH of the sample, the extraction time, and desorption conditions were optimized. Under selected conditions, extraction was completed in 15 min. High-performance liquid chromatography with UV detection was employed to determine BPA after the extraction. For water samples, the developed method exhibited a limit of detection (LOD) of 14 ng L−1, a relative standard deviation of 2.7% (intraday), and spiked recoveries ranging from 89% to 106%. For milk samples, the LOD was 0.16 μg L−1, recoveries ranged from 95% to 101%, and BPA was found in four samples at levels of 0.45–0.94 μg L−1. The proposed method not only provides a rapid and reliable analysis but it also overcomes problems with conventional solid-phase extraction (SPE), such as the packing of the SPE column and the time-consuming nature of the process of loading large-volume samples.  相似文献   

16.
In this paper we describe the synthesis, characterisation and use of two distinct molecularly imprinted polymers (MIPs) prepared using esters of p-hydroxybenzoic acid (parabens) as templates: one MIP was synthesised by precipitation polymerisation using a semi-covalent molecularly imprinting strategy with methyl paraben as the template/target (MIP 1); the second MIP was prepared in monolithic form through a conventional non-covalent molecular imprinting strategy, with butyl paraben as the template (MIP 2). MIP 1 recognized methyl paraben, showed cross-selectivity for other parabens analytes used in the study and higher affinity towards these compounds than did a non-imprinted control polymer. Similarly, MIP 2 demonstrated higher affinity towards paraben analytes than a non-imprinted control polymer.For the analysis of environmental water samples, a solid-phase extraction (SPE) protocol was developed using MIP 2 as sorbent, and results were compared to a SPE using a commercial sorbent (Oasis HLB). With MIP 2 as sorbent and butyl paraben as target, when percolating 500 mL of river water spiked at 1 μg L−1 through the SPE cartridge, and using 1 mL of isopropanol as cleaning solvent, a higher recovery of butyl 4-hydroxybenzoate (butyl paraben) and a cleaner chromatogram where achievable when using the MIP compared to the commercial sorbent.  相似文献   

17.
This paper describes the development and validation of a new procedure for the simultaneous determination of 41 multi-class priority and emerging organic pollutants in water samples using microextraction by packed sorbent (MEPS) followed by large volume injection–gas chromatography–mass spectrometry (LVI–GC–MS). Apart from method parameter optimization the influence of humic acids as matrix components on the extraction efficiency of MEPS procedure was also evaluated. The list of target compounds includes polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalate esters (PEs), nonylphenols (NPs), bisphenol A (BPA) and selected steroid hormones. The performance of the new at-line microextraction-LVI–GC–MS protocol was compared to standard solid-phase extraction (SPE) and LVI–GC–MS analysis. LODs for 100 mL samples (SPE) ranged from 0.2 to 736 ng L−1 were obtained. LODs for 800 μL of sample (MEPS) were between 0.2 and 266 ng L−1. In the case of MEPS methodology even a sample volume of only 800 μL allowed to detect the target compounds. These results demonstrate the high sensitivity of both procedures which permitted to obtain good recoveries (>75%) for all cases. The precision of the methods, calculated as relative standard deviation (RSD) was below 21% for all compounds and both methodologies. Finally, the developed methods were applied to the determination of target analytes in various samples, including snow and wastewater.  相似文献   

18.
Molecular imprinted polymer (MIP) as solid-phase microextraction (SPME) fibers coating has gained great attention in recent years. In this study, a simple preparation approach for bisphenol A (BPA) MIP coating with controlled thickness on fused-silica capillaries was developed. A capillary was inserted into a larger bore capillary to form a sleeve as mold. The prepolymer solution containing the template BPA was introduced into the interspace between the two capillaries for polymerization under photoirradiation. The larger bore capillary was removed away after the polymerization, and MIP coating with certain thickness on the surface of the inserted capillary was obtained. SPME conditions based on the MIP-coated fibers were optimized, and the extraction performance of the fibers with different thickness coating was compared. Finally, the MIP fibers were used for selective extraction of BPA spiked in tap water, human urine, and milk samples. The average recoveries of spiked BPA in the three samples were 92.5%, 81.6%, and 87.5%, respectively. The present analytical performance is not up to par for applicability to real environmental matrices. Further improvement will be necessary for analysis of real complex samples.  相似文献   

19.
Solid-phase extraction (SPE) procedures for cleanup and preconcentration followed by HPLC-UV method were investigated for the simultaneous determination of seven low-dosed pesticides in saline concentrates for hemodialysis. The target compounds were ametryn, desmetryn, prometryn, terbutryn, molinate, triallate and butylate. Polyethylene (three different types), teflon, polyurethane and polystyrene, in powder form, were investigated as adsorbents for solid-phase extraction of the analytes from the saline samples. Quantification was performed at 222 nm and the analytes were separated on a LiChrosorb RP-18 (5 μm, 125 mm × 4 mm i.d.) column using gradient elution with water/acetonitrile as mobile phase. The duration each chromatographic run was 18 min including column reconditioning. The efficiency of the different SPE substrates for retaining the analytes from the highly concentrated saline (HCS) samples was discussed. The best performance was achieved with polystyrene as SPE material considering preconcentration factor, precolumn clogging, reusing capability and similarity between the mobile phases for SPE and HPLC procedures. Analyte concentrations as low as 1 μg L−1 could be determined in spiked HCS samples after preconcentration on polystyrene SPE precolumns. Recoveries between 98.7 and 102.2% were obtained from commercial spiked samples. Detection limits ranging from 4.8 (for prometryn) to 46 μg L−1 (for butylate) were calculated (without preconcentration). The within-day relative standard deviations (n = 9) ranged from 2.3 to 4.8%.  相似文献   

20.
One‐monomer molecularly imprinted magnetic nanoparticles were prepared as adsorbents for selective extraction of bisphenol A from water in this study. A single bi‐functional monomer was adopted for preparation of the molecularly imprinted polymer, avoiding the tedious trial‐and‐error optimizations as traditional strategy. Moreover, bisphenol F was used as the dummy template for bisphenol A to avoid the interference from residual template molecules. These nanoparticles showed not only large adsorption capacity and good selectivity to the bisphenol A but also outstanding magnetic response performance. Furthermore, they were successfully used as magnetic solid‐phase extraction adsorbents of bisphenol A from various water samples, including tap water, river water, and seawater. The developed method was found to be much more efficient, convenient, and economical for selective extraction of bisphenol A compared with the traditional solid‐phase extraction. Separation of these nanoparticles can be easily achieved with an external magnetic field, and the optimized adsorption time was only 15 min. The recoveries of bisphenol A in different water samples ranged from 85.38 to 93.75%, with relative standard deviation lower than 7.47%. These results showed that one‐monomer molecularly imprinted magnetic nanoparticles had the potential to be popular adsorbents for selective extraction of pollutants from water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号