首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zhang W  Zhao D  Zhang R  Ye Z  Wang G  Yuan J  Yang M 《The Analyst》2011,136(9):1867-1872
Electrochemiluminescence (ECL) detection technique using bipyridine-ruthenium(II) complexes as probes is a highly sensitive and widely used method for the detection of various biological and bioactive molecules. In this work, the spectral, electrochemical and ECL properties of a chemically modified bipyridine-ruthenium(II) complex, [Ru(bpy)(2)(dabpy)](2+) (bpy: 2,2'-bipyridine; dabpy: 4-(3,4-diaminophenoxy)-2,2'-bipyridine), were investigated and compared with those of its nitric oxide (NO)-reaction derivative [Ru(bpy)(2)(T-bpy)](2+) (T-bpy: 4-triazolephenoxy-2,2'-bipyridine) and [Ru(bpy)(3)](2+). It was found that the ECL intensity of [Ru(bpy)(2)(dabpy)](2+) could be selectively and sensitively enhanced by NO due to the formation of [Ru(bpy)(2)(T-bpy)](2+) in the presence of tri-n-propylamine. By using [Ru(bpy)(2)(dabpy)](2+) as a probe, a sensitive and selective ECL method with a wide linear range (0.55 to 220.0 μM) and a low detection limit (0.28 μM) was established for the detection of NO in aqueous solutions and living cells. The results demonstrated the utility and advantages of the new ECL probe for the detection of NO in complicated biological samples.  相似文献   

2.
A series of mono- and binuclear ruthenium(II) tris-bipyridine complexes tethered to oligothienylenevinylenes have been synthesized and characterized by 1H NMR, 13C NMR and TOF-MS spectrometry. Photophysics, electrochemistry and electrogenerated chemiluminescence (ECL) properties of these complexes are investigated. The electronic absorption spectra of the mononuclear ruthenium complexes show a significant red shift both at MLCT (metal-to-ligand charge transfer) and π-π transitions of oligothienylenevinylenes with increase in the number of thiophenyl-2-yl-vinyl unit. For the binuclear complexes these two absorption bands are overlapped. All the metal complexes have very weak emission compared to that of the reference complex Ru(bpy)2+3. The first reduction potentials of all mononuclear ruthenium complexes are less negative than that of Ru(bpy)2+3, due to the moderate electron-withdrawing effect of oligothienylenevinylenes. For binuclear ruthenium complexes, only one Ru(II/III) oxidation peak (E1/2 = 0.96 V vs. Ag/Ag+) was observed, suggesting a weak interaction between two metal centers. Three successive reduction processes of bipyridine ligands are similar among all ruthenium complexes except for RuTRu, which has a very sharp peak owing to the accumulation of neutral product on the electrode surface. All these ruthenium complexes exhibited different ECL property in CH3CN solution without any additional reductant or oxidant. For three mononuclear ruthenium complexes, the ECL intensity strengthens with increase in the number of thiophene-2-yl-vinyl unit. However, the ECL efficiency dramatically decreased in the binuclear ruthenium complexes. The ECL efficiencies of all the reported complexes do not exceed that of Ru(bpy)2+3, where the ECL efficiency decreases in the order of RuTRu > Ru3T > Ru2T > RuT > Ru2TRu (RuT,bis-2,2′-bipyridyl-(4-methyl-4′-(2-thienylethenyl)-2,2′-bipyridine) ruthenium dihexafluorophosphate; Ru2T, bis-2,2′-bipyridyl-(4-methyl-4′-{(E)-2-[5-((E)-2-thienylethenyl)-thienylethenyl]}-2,2′-bipyridine) ruthenium dihexafluorophosphate; Ru3T, bis-2,2′-bipyridyl-(4-methyl-4′-{(E)-2-{(E)-2-[5-((E)-2-thienylethenyl)-thienylethenyl]}}-2,2′-bipyridine) ruthenium dihexafluorophosphate; RuTRu, bis-2,2′-bipyridyl-ruthenium-bis-[2-((E)-4′-methyl-2, 2′-bipyridinyl-4)-ethenyl]-thienyl-bis-2,2′-bipyridyl-ruthenium tetrahexafluorophosphate; Ru2TRu, bis-2,2′-bipyridyl-ruthenium-(E)-1,2-bis-{2-[2-((E)-4′-methyl-2,2′-bipyridinyl-4)-ethenyl]-thienyl}-ethenyl-bis-2,2′-bipyridyl-ruthenium tetrahexafluorophosphate).  相似文献   

3.
Ruthenium(II) complexes bearing a redox-active tridentate ligand 4′-(2,5-dimethoxyphenyl)-2,2′:6′,2′′-terpyridine (tpyOMe), analogous to terpyridine, and 2,2′-bipyridine (bpy) were synthesized by the sequential replacement of Cl by CH3CN and CO on the complex. The new ruthenium complexes were characterized by various methods including IR and NMR. The molecular structures of [Ru(tpyOMe)(bpy)(CH3CN)]2+ and two kinds of [Ru(tpyOMe)(bpy)(CO)]2+ were determined by X-ray crystallography. The incorporation of monodentate ligands (Cl, CH3CN and CO) regulated the energy levels of the MLCT transitions and the metal-centered redox potentials of the complexes. The kinetic data observed in this study indicates that the ligand replacement reaction of [Ru(tpyOMe)(bpy)Cl]+ to [Ru(tpyOMe)(bpy)(CH3CN)]2+ proceeds by a solvent-assisted dissociation process.  相似文献   

4.
A highly reproducible and sensitive signal-on electrogenerated chemiluminescence (ECL) biosensor based on the DNAzyme for the determination of lead ion was developed. The ECL biosensor was fabricated by covalently coupling 5′-amino-DNAzyme-tagged with ruthenium bis (2,2′-bipyridine) (2,2′-bipyridine-4,4′-dicarboxylic acid)-ethylenediamine (Ru1-17E′) onto the surface of graphite electrode modified with 4-aminobenzoic acid, and then a DNA substrate with a ribonucleotide adenosine hybridized with Ru1-17E′ on the electrode. Upon binding of Pb2+ to the Ru1-17E′ to form a complex which catalyzed the cleavage of the DNA substrate, the double-stranded DNA was dissociated and thus led to a high ECL signal. The signal linearly increases with the concentration of Pb2+ in the range from 5.0 to 80 pM with a detection limit of 1.4 pM and a relative standard derivation of 2.3%. This work demonstrates that using DNAzyme tagged with ruthenium complex as an ECL probe and covalently coupling method for the fabrication of the ECL biosensor with high sensitivity, good stability and significant regeneration ability is promising approach.  相似文献   

5.
Electrogenerated chemiluminescences (ECLs) based on tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy)32+) and lupin alkaloids, for instance, sophoridine (SRI), matrine (MT), sophoranol (SR) and sophocarpine (SC) in an aqueous alkaline buffer solution (pH 9.0) are studied. The light emission is mainly caused by an electro-oxidation reaction between tertiary amino group on the alkaloid compounds and Ru(bpy)32+ in a thin layer flow cell equipped with a glassy carbon disc electrode (22.1 mm2) at the potential of +1.50 V (versus Ag/AgCl). The luminescence wavelength of 610 nm confirmed that ECL is caused by Ru(bpy)32+∗ to its ground state. ECL intensities of these lupin alkaloids are affected by the substituent character, three-dimensional conformation of hydrogen on β-carbon atom. Ionization potentials taken from calculation data further confirm the experimental results. In addition, the factors affecting the determination and HPLC separation of the four alkaloids are also investigated.  相似文献   

6.
An electrochemical biosensor for the detection of DNA based a peptide nucleic acid (PNA) capture probe (CP) modified indium tin oxide electrode (ITO) is described in this report. After hybridization, a threading intercalator, N,N′-bis[(3-propyl)-imidazole]-1,4,5,8-naphthalene diimide (PIND) imidazole complexed with Ru(bpy)2Cl (PIND-Ru, bpy = 2,2′-bipyridine), was introduced to the biosensor. PIND-Ru selectively intercalated to double-stranded DNA (ds-DNA) and became immobilized on the biosensor surface. Voltammetric tests showed highly stable and reversible electrochemical oxidation/reduction processes and the peak currents can directly be utilized for DNA quantification. When the tests were conducted in an amine-containing medium, Tris-HCl buffer for example, a remarkable improvement in the voltammetric response and noticeable enhancements of voltammetric and amperometric sensitivities were observed due to the electrocatalytic activity of the [Ru(bpy)2Cl] redox moieties. Electrocatalytic current was observed when as little as 3.0 attomoles of DNA was present in the sample solution.  相似文献   

7.
Wang X  Zhou J  Yun W  Xiao S  Chang Z  He P  Fang Y 《Analytica chimica acta》2007,598(2):242-248
A sensitive and selective aptasensor using tri(2,2′-bipyridyl)ruthenium(II)-doped silica nanoparticles (Ru(bpy)32+-doped SNPs) as DNA tags for detection of thrombin is developed based on the target protein-induced strand displacement of the DNA probe. For the proposed aptasensor, the aptamer was assembled on the surface of the Au electrode through Au-S binding. The hybridization event between the DNA probe labeled by the Ru(bpy)32+-doped SNPs and the aptamer was evaluated by electrogenerated chemiluminescence (ECL) measurements. Then, the DNA probe was displaced by thrombin and the binding event between the thrombin and the aptamer was monitored by ECL measurements again. The difference of ECL intensity (ΔIECL) of the two events could be used to quantify the thrombin. Other proteins, such as bovine serum albumin and bovine hemoglobin, had almost negligible ΔIECL. Under the optimal conditions, the ΔIECL was linearly related to the concentration of the thrombin in the range of 10 fM to 10 pM and the detection limit was down to 1.0 fM since SNPs containing a large number of Ru(bpy)32+ molecules were labeled on the DNA probe.  相似文献   

8.
The cations in the solid-state structures of meso-(ΛΔ)-[{Ru(bpy)2}2(μ-bpm)](PF6)4, meso-(ΛΔ)-[{Ru(Me2bpy)2}2(μ-bpm)](tos)4 · 2CH3OH · 4H2O and meso-(ΛΔ)-[{Ru(Me4bpy)2}2(μ-bpm)](tos)4 · 26H2O (bpm = 2,2′-bipyrimidine; bpy = 2,2′-bipyridine; Me2bpy = 4,4′-dimethyl-2,2′-bipyridine; Me4bpy = 4,4′,5,5′-tetramethyl-2,2′-bipyridine; tos = toluene-4-sulfonate anion) exhibit similar features including comparable bond lengths and angles, and metal–metal separations of 5.56–5.59 Å. The counter-ions present in the structures reside in the clefts above and below the plane of the bridging ligand, but show considerable variation in location compared with their known occupancy in solution.  相似文献   

9.
《Analytical letters》2012,45(8):1255-1266
A solid-state [Ru(bpy)2(dppz)]2+ (bpy = 2,2′-bipyridine, dppz = dipyrido[3,2-a: 2′,3′-c]phenazine) electrochemiluminescence (ECL) biosensor for studying the binding interactions between pesticides of heterocyclic polycyclic aromatic hydrocarbon (heteroPAH) and natural double-stranded DNA (ds-DNA) was constructed. Layer-by-layer films of negatively charged natural ds-DNA and polycationic poly (diallyldimethylammonium chloride) (PDDA) were assembled on the surface of a glassy carbon electrode (GCE). The complex of [Ru(bpy)2(dppz)]2+ was used as a probe. Tripropylamine (TPA) was used as an electron donor to chemically amplify the ECL intensity of the probe. If the xenobiotic molecules compete with the probe for the same site on the DNA film, it would displace the probe from the DNA to decrease the ECL signal. The interactions of DNA with three pesticide molecules, quinalphos, quinclorac and carbendazim, were studied. From the displacement curve, the values of binding constant K b of three pesticides to DNA is determined, which is in the range of 0.5 × 104 to 2.3 × 104 M?1.  相似文献   

10.
《Analytical letters》2012,45(8):1381-1391
A novel and simple method for detection of choline in milk powder using electrogenerated chemiluminescence (ECL) without prior separation was developed and its mechanism was studied thoroughly. Choline could not strengthen ECL signals of tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy)32+) to be detected. Heated to its melting point, choline decomposed into two new compounds, trimethylamine and N,N-dimethyl-2-aminoethanol. Both of them were tertiary amines and could act as ECL co-reactants to strengthen the ECL signals of Ru(bpy)32+ sharply. The detection method overcame the defects of the commonly used method based on enzyme procedures and liquid chromatography-mass spectrometric technique.  相似文献   

11.
A novel method for immobilization of tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)3Cl2) on electrode surfaces based on the vapor-surface sol-gel deposition strategy is first demonstrated in this paper. Ru(bpy)3Cl2 immobilized sol-gel (Ru(bpy)3Cl2/sol-gel) films were characterized by UV-vis spectroscopy and field-emitted scanning electron microscopy (FE-SEM). These results showed that Ru(bpy)3Cl2 was successfully incorporated into the silica sol-gel film. It was found that many irregular Ru(bpy)3Cl2/sol-gel clusters were formed on surfaces through one deposition and thick sol-gel films were observed after further deposition. Electrochemical properties and electrochemiluminescence (ECL) behaviors of Ru(bpy)3Cl2/sol-gel films could be easily adjusted by deposition numbers and time. At last, the Ru(bpy)3Cl2/sol-gel film modified electrode was used for solid-state ECL detection of tripropylamine. The linear range was from 5.8 × 10−8 to 2.4 × 10−4 M with the detection limit of 5 nM, which was three orders of magnitude lower than that from pure Nafion-modified electrodes. The ECL sensor also exhibited high stability, and still remained 92% response after being stored in air for 35 days. This method for immobilization of Ru(bpy)3Cl2 is simple, convenient and low-cost relative to others, so it shows promising applications in solid-state ECL detection.  相似文献   

12.
Yali Li  Hui Zhu  Xiurong Yang 《Talanta》2009,80(2):870-2045
In order to solidify the electrochemiluminescence (ECL) luminophor tris(2,2′-bipyridyl) ruthenium(II) ([Ru(bpy)3]2+) onto the electrode surfaces robustly, the negative charged heteropolyacids (HPAs) moieties were utilized to attract and bond cations [Ru(bpy)3]2+ via an adsorption method. The compositions and microstructures of the hybrid complexes were characterized by elemental analysis (EDS), spectroscopic techniques (UV-vis, FTIR) and field-emission scanning electron microscopy (FE-SEM). The electrochemical and ECL behaviors of the [Ru(bpy)3]2+/[PW12O40]3− hybrid complex contained in the solid film of the nanocomposites formed on the electrode surfaces were also studied. It was found that the corresponding solid membranes exhibited a diffusion-controlled voltammetric feature and excellent electrochemiluminescence behaviors. Hence potential prospects as new electrochemiluminescent materials for application in electroanalytical detection are envisioned.  相似文献   

13.
A highly selective and sensitive detection method based on tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+] electrogenerated chemiluminescence (ECL) has been developed for the quantitative determination of β-blockers in both pharmaceutical preparations and human urine samples. The ECL emission is based on the reaction between electro-oxidized Ru(bpy)33+ and the secondary amino groups on the β-blockers. The ECL intensities for the β-blockers were strongly dependent on the pH at which the ECL detections were conducted, with the maximum intensities being obtained at pH 9.0. Under the optimal condition, the detection limit for atenolol and metoprolol were almost 0.5 μM (50 pmol) and 0.08 μM (8 pmol), respectively, with S/N of 3 and a linear working range that extends four orders of magnitude with relative standard deviations below 5% for 10 replicate injected samples. The concentrations of atenolol and metoprolol were determined in pharmaceutical preparations using flow injection analysis with Ru(bpy)32+ ECL detection based on standard addition method. The determined values by the present method showed acceptable agreement with the stated values by manufacturers. The determination of the five β-blockers in human urine samples was performed using HPLC-Ru(bpy)32+ ECL detection. The resulting chromatogram was much simpler than that obtained with HPLC-UV absorbance detection.  相似文献   

14.
An effective electrochemiluminescence (ECL) sensor based on Nafion/poly(sodium 4-styrene sulfonate) (PSS) composite film-modified ITO electrode was developed. The Nafion/PSS/Ru composite film was characterized by atomic force microscopy, UV-vis absorbance spectroscopy and electrochemical experiments. The Nafion/PSS composite film could effectively immobilize tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via ion-exchange and electrostatic interaction. The ECL behavior of Ru(bpy)32+ immobilized in Nafion/PSS composite film was investigated using tripropylamine (TPA) as an analyte. The detection limit (S/N = 3) for TPA at the Nafion/PSS/Ru composite-modified electrode was estimated to be 3.0 nM, which is 3 orders of magnitude lower than that obtained at the Nafion/Ru modified electrode. The Nafion/PSS/Ru composite film-modified indium tin oxide (ITO) electrode also exhibited good ECL stability. In addition, this kind of immobilization approach was simple, effective, and timesaving.  相似文献   

15.
A highly sensitive and stable tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) electrogenerated chemiluminescence (ECL) sensor was developed based on carbon nanotube (CNT) dispersed in mesoporous composite films of sol-gel titania and perfluorosulfonated ionomer (Nafion). Single-wall (SWCNT) and multi-wall carbon nanotubes (MWCNT) can be easily dispersed in the titania-Nafion composite solution. The hydrophobic CNT in the titania-Nafion composite films coated on a glassy carbon electrode certainly increased the amount of Ru(bpy)32+ immobilized in the ECL sensor by adsorption of Ru(bpy)32+ onto CNT surface, the electrocatalytic activity towards the oxidation of hydrophobic analytes, and the electronic conductivity of the composite films. Therefore, the present ECL sensor based on the CNT-titania-Nafion showed improved ECL sensitivity for tripropylamine (TPA) compared to the ECL sensors based on both titania-Nafion composite films without CNT and pure Nafion films. The present Ru(bpy)32+ ECL sensor based on the MWCNT-titania--Nafion composite gave a linear response (R2 = 0.999) for TPA concentration from 50 nM to 1.0 mM with a remarkable detection limit (S/N = 3) of 10 nM while the ECL sensors based on titania-Nafion composite without MWCNT, pure Nafion films, and MWCNT-Nafion composite gave a detection limit of 0.1 μM, 1 μM, and 50 nM, respectively. The present ECL sensor showed outstanding long-term stability (no signal loss for 4 months).  相似文献   

16.
The cationic luminescence probe, tris(2,2′-bipyridyl)ruthenium(II) complex ([Ru(bpy)3]2+), was incorporated into laponite-modified glassy carbon electrode (GCE) via two strategies, namely, the adsorption and intercalation methods. These two incorporation methods resulted in different microenvironment for the immobilized [Ru(bpy)3]2+ within laponite as well as the different host–guest and guest–guest interactions. Herein, cyclic voltammetry and electrochemiluminescence (ECL) were innovatively performed to monitor the interactions. Tripropylamine (TPA) was used as coreactant in the electrochemical and ECL system.  相似文献   

17.
A novel electrogenerated chemiluminescence (ECL) sensor based on natural clay and ionic liquid was fabricated. Tris(2,2′‐bipyridine)ruthenium(II) (Ru(bpy)32+) was immobilized on natural clay surface through simple adsorption. An ECL sensor was prepared by mixing Ru(bpy)32+‐incorporated clay, graphite powder and an ionic liquid (1‐butyl‐3‐methylimidazolium hexafluorophosphate) as the binder. The electrochemical behavior and ECL of the immobilized Ru(bpy)32+ was investigated. It was observed that the ECL of immobilized Ru(bpy)32+ was activated by the ionic liquid. The proposed ECL sensor showed high sensitivity to tri‐n‐propylamine (TPrA) and the detection limit was found to be 20 pM. In addition, the ECL sensor displayed good stability for TPrA detection and long‐term storage stability.  相似文献   

18.
Tris(2,2′‐bipyridine)ruthenium(II) ([Ru(bpy)3]2+) is one of the most extensively studied and used electrochemiluminescent (ECL) compounds owing to its superior properties, which include high sensitivity and stability under moderate conditions in aqueous solution. In this paper we present a simple method for the preparation of [Ru(bpy)3]2+‐containing microstructures based on electrostatic assembly. The formation of such microstructures occurs in a single process by direct mixing of aqueous solutions of [Ru(bpy)3]Cl2 and K3[Fe(CN)6] at room temperature. The electrostatic interactions between [Ru(bpy)3]2+ cations and [Fe(CN)6]3? anions cause them to assemble into the resulting microstructures. Both the molar ratio and concentration of reactants were found to have strong influences on the formation of these microstructures. Most importantly, the resulting [Ru(bpy)3]2+‐containing microstructures exhibit excellent ECL behavior and, therefore, hold great promise for solid‐state ECL detection in capillary electrophoresis (CE) or CE microchips.  相似文献   

19.
Electrochemiluminescence (ECL) is the process where species generated at electrodes undergo electron-transfer reactions to form excited states that emit light. Application of a voltage to an electrode in the presence of an ECL luminophore such as Ru(bpy)32+ (where bpy = 2,2-bipyridine) or diphenylanthracene results in light emission and allows detection of the emitter at very low concentrations (10–12 mol dm–3). By employing ECL-active species as labels on biological molecules, ECL has found commercial application for immunoassays and DNA analyses. The history of ECL is presented including the earliest, curiosity driven experiments and the development of ECL into an analytical technique for clinical diagnostic applications. The development and use of ECL sensors is an excellent example of how, over time, a laboratory curiosity can become a useful, powerful, and commercially viable technique.  相似文献   

20.
Electrochemical behavior and electrogenerated chemiluminescence (ECL) of tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) immobilized in poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol) (PEDOT/PSS-PVA) composite films via ion-exchange have been investigated with tripropylamine (TPA) as the co-reactant at a glassy carbon electrode. The immobilized Ru(bpy)32+ performed a surface-controlled electrode reaction. The Ru(bpy)32+ modified electrode showed a fast ECL response to TPA, and was used for the ECL detection of TPA with high sensitivity. The ECL intensity was linearly related to concentrations of TPA over the range from 0.50 μmol L−1 to 0.80 mmol L−1, and the detection limit was 0.10 μmol L−1 (S/N = 3). The as-prepared electrode exhibited good precision and long-term stability for TPA determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号