首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A highly sensitive electrochemical immunoassay of chlorpyrifos (CPF) was developed by using a biocompatible quinone-rich polydopamine nanospheres modified glass carbon electrode as the sensor platform and multi-horseradish peroxidase-flake like Fe3O4 coated carbon nanotube nanocomposites as the signal label. Due to the quinone-rich polydopamine nanospheres, the platform exhibited excellent fixing capacity by simple coating of sticky polydopamine nanospheres and subsequent oxidization. By coprecipitation of Fe3+ and Fe2+ on polydopamine modified carbon nanotubes (CNTs) with the aid of ethylene glycol (EG), the flake-like Fe3O4 coated CNTs (CNTs@f-Fe3O4) were synthesized and chosen as the carrier of multi-enzyme label due to the high loading of secondary antibody (Ab2) and horseradish peroxidase (HRP) and also the peroxidase-mimic activity of Fe3O4. Under the optimum conditions, the immunosensor can detect CPF over a wide range with a detection limit of 6.3 pg/mL. Besides, the high specificity, reproducibility and stability of the proposed immunosensor were also proved. The preliminary application in real sample showed good recoveries, indicating it holds promise for fast analysis of CPF in aquatic environment.  相似文献   

2.
Polyaniline (PANI) nanotubes containing Fe3O4 nanoparticles were synthesized under ultrasonic irradiation of the aqueous solutions of aniline, ammonium peroxydisulfate (APS), phosphoric acid (H3PO4), and the quantitative amount of Fe3O4. It was found that the obtained samples had the morphologies of nanotubes. TEM images and selected area electronic diffractions showed that Fe3O4 nanoparticles were embedded in PANI nanotubes. We thought that the mechanism of the formation of PANI/Fe3O4 nanotubes could be attributed to the ultrasonic irradiation and the H3PO4-aniline salt template. The molecular structure of PANI/Fe3O4 nanotubes were characterized by Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectra and X-ray diffraction (XRD). The conductivity and magnetic properties of the PANI nanotubes containing Fe3O4 nanoparticles were also investigated.  相似文献   

3.
A novel electrochemical nanostructured biosensor based on carbon nanotubes (CNTs) has been constructed by magnetic assembly method. The magnetic multi-walled carbon nanotubes (M-MWNTs) were prepared by introducing Fe2O3 nanoparticles into the nanotubes. Thus the multilayered functional platform could be assembled with the aid of magnetic field. The horseradish peroxidase (HRP) was employed as a model enzyme to demonstrate the final performance of the nanostructured biosensor. SEM, UV–vis spectroscopy and electrochemical techniques were used for characterization of assembly process. The resulting three-dimensional M-MWNTs/HRP multilayer films have showed satisfactory stability, biocompatibility and electrochemical properties.  相似文献   

4.
以FeCl3·6H2O为单一铁源、1,2-丙二醇为还原剂和溶剂、尿素为均相沉淀剂、顺丁烯二酸为添加剂,通过简单一步溶剂热法于160℃制备出了形貌均一、单分散性好、尺寸约为200 nm的Fe3O4纳米微球。所制备的Fe3O4纳米微球不仅具有很高的磁化强度,而且在利用过氧化氢氧化降解二甲酚橙(XO)的过程中显示出很好的催化活性。紫外可见分光光度法考察表明,不加入Fe3O4催化剂时,1 h内双氧水对二甲酚橙的脱色率仅为6.2%,而加入Fe3O4纳米微球后,双氧水对二甲酚橙的脱色率在1 h内即可达到100%,循环使用10次后,Fe3O4纳米微球仍保持高的催化活性和结构稳定性。  相似文献   

5.
以FeCl3·6H2O为单一铁源、1, 2-丙二醇为还原剂和溶剂、尿素为均相沉淀剂、顺丁烯二酸为添加剂, 通过简单一步溶剂热法于160℃制备出了形貌均一、单分散性好、尺寸约为200 nm的Fe3O4纳米微球。所制备的Fe3O4纳米微球不仅具有很高的磁化强度, 而且在利用过氧化氢氧化降解二甲酚橙(XO)的过程中显示出很好的催化活性。紫外可见分光光度法考察表明, 不加入Fe3O4催化剂时, 1 h内双氧水对二甲酚橙的脱色率仅为6.2%, 而加入Fe3O4纳米微球后, 双氧水对二甲酚橙的脱色率在1 h内即可达到100%, 循环使用10次后, Fe3O4纳米微球仍保持高的催化活性和结构稳定性。  相似文献   

6.
采用溶剂热法制备出具有尺寸可调、分散性好、亲水性和超顺磁性的亚微米Fe3O4磁球,并考察了不同表面活性剂、反应时间和反应温度的影响。分别采用XRD、FE-SEM、FTIR、超导量子干涉仪(SQUID)对其结构、形貌、表面性质及磁性进行了表征。结果表明,产物为立方结构、具有单分散性的Fe3O4亚微米球,粒径在140~360nm可调。所得Fe3O4亚微米球在室温条件下的磁滞回线表现出超顺磁性,矫顽力为零。不同表面活性剂对粒径大小和磁饱和强度有一定的影响,但对其形貌和晶相结构无影响。随着反应时间的延长和反应温度的提高,颗粒粒径有逐渐减小的趋势。  相似文献   

7.
We report a one-step synthesis of Fe3O4 nanoparticles coated with PEG. The formation of the Fe3O4 core and the polymer coating took place simultaneously. Furthermore, these nanoparticles were modified with 3-APTES, providing a -NH2 functional group, and applied in the immobilization of lysozyme. In this paper, the modified magnetic nanoparticles acting as a general agent to immobilize proteins are around 10 nm in size. The protein immobilization can be adjusted flexibly by changing either the amount of glutaraldehyde or the buffer solution.  相似文献   

8.
磁性Fe3O4 /壳聚糖的化学修饰及包覆机理研究   总被引:1,自引:0,他引:1  
Nano-sized Fe3O4 powder was prepared through an Oxygenation-Hydrothermal method. The chitosan magnetic complex was prepared by coating chitosan on the surface of Fe3O4 powders through Microlatex-Crosslinking Method. The product was characterized by IR, XRD, TEM, Vibrating Sample Magnetometer (VSM), TG methods. Results show that the as-prepared powder is 25 nm in size and shows supermagnetism. The content of magnetite in microspheres is 37.8%. The mechanism for the coating reaction of chitosan to Fe3O4 nanoparticles is also suggested.  相似文献   

9.
In this paper, monodisperse Fe3O4 nanoparticles with single crystalline structure were synthesized via a facile environment-friendly method. And the size of the nanoparticles ranges from 10 nm to 15 nm. As-synthesized Fe3O4 were characterized by X-ray diffraction instrument (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectrometer and field emission transmission electron microscope (FE-TEM). The effect of tartaric acid (TA) amount on products was investigated by XRD and TEM. The results indicated that TA could commendably modulate the crystalline phase, morphology and size of nanometer Fe3O4. A possible generated mechanism of Fe3O4 crystals was proposed in virtue of UV–vis absorption spectra. Besides, the magnetic properties of as-synthesized Fe3O4 were detected.  相似文献   

10.
球形纳米Fe3O4的制备及超级电容性能研究   总被引:2,自引:0,他引:2  
采用双氧水氧化水热法制备Fe3O4,通过IR、XRD和SEM对样品的结构和性能进行表征。结果表明,产物为形貌规整的球形,平均粒径为25 nm。通过恒流充放电、循环伏安和交流阻抗等方法研究Fe3O4电极的电容性能。电化学测试表明,在1 mol·L-1 Na2SO3溶液中,-1.2~0.2 V(vs SCE)电位范围内,Fe3O相似文献   

11.
<正>众所周知,纳米材料的尺寸大小、晶型、形貌构型等结构特征对材料的化学物理性能有重要的影响[1],由于特殊形貌的新材料所具有独特、新颖、高效的化学物理等方面的性质以及在众多领域中的潜在应用[2],特别是3D花状空心纳米结构新物质[3-4],新形貌物质的纳米材料的制备方法和应用特性已经吸引了世界上材料领域的广泛兴趣和关注[5]。目前为止,合成3D纳米结构的方法有自组装法、三维导向连接法以及水热法等,即通过使用有  相似文献   

12.
通过简易的超声法以及原位还原法成功制备出了负载型可再生Au/Fe3O4催化剂。利用3-氨丙基三乙氧基硅烷(APTES)作为有机桥键,将Au固定在Fe3O4的表面,得到单分散磁性Au/Fe3O4。Au0在氨基的作用下不会团聚,因此具有较高的催化活性及稳定性。XRD、HRTEM、EDS和XPS等测试结果表明Au/Fe3O4已被成功制备。将其用于催化还原4-硝基苯酚得到4-氨基苯酚,表现出较高的催化活性,速率常数可达0.225 6 min-1。重复性实验表明该催化剂具有良好的稳定性,反应9个循环之后,催化还原反应的转化率仍可达到94%。  相似文献   

13.
采用超声法将磁基体Fe3O4和BiVO4复合,制备了易于固液分离的磁性可见光催化剂BiVO4/Fe3O4。采用X射线衍射(XRD)、傅立叶转换红外光谱(FTIR)、紫外-可见漫反射光谱(DRS)、透射电子显微镜(TEM)和磁学性质测量系统(MPMS)对产物进行了表征,并以亚甲基蓝为目标降解物,考察了BiVO4/Fe3O4的可见光催化活性。当BiVO4与Fe3O4质量比为5:1时,BiVO4/Fe3O4的催化活性最高,反应经过5 h,对亚甲基蓝的降解率达到92.0%,而单独使用BiVO4为催化剂,降解率仅为72.5%。这表明Fe3O4不仅起到磁基体的作用,还起到助催化剂的作用。BiVO4/Fe3O4在外加磁场的作用下很容易被分离,撤消外加磁场后,通过搅拌又可重新分散。BiVO4/Fe3O4 3次回收后的降解率仍高于80%。  相似文献   

14.
The paper first reported the preparation of ultrafine Fe3O4 powder about 8~10nm by improved chemical pre-cipitation method, then turned it into magnetic fluid. The phase analysis, morphology, ultrafine powder size and magnetic property were measured by XRD, TEM and vibrating sample magnetometer(VSM),respectively. In ad-dition, a new method , by analyzed the suspending percentage of Fe3O4 powder, was introduced to study the effects of concentration, pH value, centrifugal rate and time on the stability of the magnetic fluid.  相似文献   

15.
通过简易的超声法以及原位还原法成功制备出了负载型可再生Au/Fe_3O_4催化剂。利用3-氨丙基三乙氧基硅烷(APTES)作为有机桥键,将Au固定在Fe_3O_4的表面,得到单分散磁性Au/Fe_3O_4。Au0在氨基的作用下不会团聚,因此具有较高的催化活性及稳定性。XRD、HRTEM、EDS和XPS等测试结果表明Au/Fe_3O_4已被成功制备。将其用于催化还原4-硝基苯酚得到4-氨基苯酚,表现出较高的催化活性,速率常数可达0.225 6 min~(-1)。重复性实验表明该催化剂具有良好的稳定性,反应9个循环之后,催化还原反应的转化率仍可达到94%。  相似文献   

16.
Half-metallic Fe3O4 films grown on a Si (100) substrate with a tantalum (Ta) buffer layer were prepared by DC magnetron reactive sputtering. Primary emphasis was placed on magnetic field growth of Fe3O4 thin film. The experiment's results showed that applying an external magnetic field to the samples during the growth was efficient to promote the polycrystalline Fe3O4 growth along certain directions. The magnetoresistance (MR) was also tested for comparison of the samples prepared with and without an external magnetic field, and showed that applying an external magnetic field can promote the MR values.  相似文献   

17.
柠檬酸根对纳米Fe3O4颗粒的生长及性能的影响   总被引:19,自引:0,他引:19  
现代诊断学的发展使得超小超顺磁性的Fe3O4粒子在医学领域具有重要应用价值。实验中利用某些羧酸盐对铁氧化物晶粒成长的抑制作用,在共沉淀法中引入柠檬酸根,制备出平均粒径小于5 nm的Fe3O4纳米分散体系。研究了不同柠檬酸根浓度对生成粒子的大小、结晶和表面吸附情况的影响。对Fe3O4颗粒在不同条件下的磁性与胶体稳定性进行了讨论。  相似文献   

18.
Fe3O4 particle-chain microwires are firstly synthesized under magnetic field by a simple coprecipitation method. The increase of magnetic field caused the lengthening of the wires, and doubled densities of starting solution lead to a halved diameter. It was supposed that the magnetic field gradient and the particular growing process of particles are the main factors of the formation of these microwires. Magnetic hysteresis curves of Fe3O4 microwires were also measured.  相似文献   

19.
以FeCl3·6H2O作为单一铁源,1,6-己二胺作为胺化试剂,利用无模板的溶剂热方法制备了胺基功能化的磁性Fe3O4纳米粒子,并利用其键合叶酸分子,制备出表面修饰了叶酸的磁性Fe3O4复合纳米粒子。利用傅里叶变换红外光谱仪、X-射线衍射仪、透射电镜、差热-热重分析仪和振动样品磁强计对所得纳米粒子的形貌、粒径、化学组成和磁性能进行了表征。结果表明,叶酸分子通过化学键牢固键合在磁性纳米Fe3O4粒子表面,叶酸修饰的复合纳米粒子仍然具有良好的磁性能。  相似文献   

20.
In this study, the superparamagnetic attapulgite/Fe3O4/polyaniline (ATP/Fe3O4/PANI) nanocomposites were successfully synthesized by a one-pot method. Fe (III) was applied as both the oxidant for the oxidative polymerization of aniline and the single iron source of Fe3O4 formed by the redox reaction between aniline and Fe (III). The ATP/Fe3O4/PANI was used as sorbent for magnetic dispersive solid phase extraction (MDSPE) of benzoylurea insecticides (BUs) in environmental water samples. The as-prepared nanocomposite sorbents were characterized by Fourier transform infrared spectra (FT-IR), X Ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry. Various experimental parameters affecting the ATP/Fe3O4/PANI-based MDSPE procedure, including the composition of the nanocomposite sorbents, amount of ATP/Fe3O4/PANI nanocomposites, vortex time, pH, and desorption conditions were investigated. Under the optimal conditions, a good linearity was observed for all target analytes, with correlation coefficients (r2) ranging from 0.9985 to 0.9997; the limits of detection (LOD) were in the range of 0.02–0.43 μg L−1, and the recoveries of analytes using the proposed method ranged between 77.37% and 103.69%. The sorbents exhibited an excellent reproducibility in the range of 1.52–5.27% in extracting the five target analytes. In addition, the intra-day and inter-day precision values were found to be in the range of 0.78–6.86% and 1.66–8.41%, respectively. Finally, the proposed ATP/Fe3O4/PANI-based MDSPE method was successfully applied to analyze river water samples by rapid preconcentration of BUs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号