首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sample of tobacco essential oil was analyzed using gas chromatography-mass spectrometry (GC/MS) and comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometry (GC × GC/TOFMS), respectively. In the GC/MS analysis, serially coupled columns were used. By comparing the GC/MS results with GC × GC/TOFMS results, many more components in the essential oil could be found within the two-dimensional separation space of GC × GC. The quantitative determination of components in the essential oil was performed by GC × GC with flame ionization detection (FID), using a method of multiple internal standards calibration.  相似文献   

2.
Comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC × GC–MS) is a powerful tool for comprehensive analysis of organic pollutants. In this study, we developed a powerful analytical method using GC × GC for rapid and accurate identification and quantification of compounds in environmental samples with complex matrices. Specifically, we have developed an automatic peak sentinel tool, T-SEN, with free programming software, R. The tool, which consists of a simple algorithm for on peak finding and peak shape identification, allows rapid screening of target compounds, even for large data sets from GC × GC coupled to high resolution time of flight mass spectrometry (HRTOFMS). The software tool automatically assigns and quantifies compounds that are listed in user databases. T-SEN works on a typical 64 bit workstation, and the reference calculation speed is 10–20 min for approximately 170 compounds for peak finding (five ion count setting) and integration from 1–2 GB of sample data acquired by GC × GC–HRTOFMS. We analyzed and quantified 17 PCDD/F congeners and 24 PCB congeners in a crude lake sediment extract by both GC × GC coupled to quadrupole mass spectrometry (qMS) and GC × GC–HRTOFMS with T-SEN. While GC × GC–qMS with T-SEN resulted in false identification and inaccurate quantification, GC × GC–HRTOFMS with T-SEN provided correct identification and accurate quantification of compounds without sample pre-treatment. The differences between the values measured by GC × GC–HRTOFMS with T-SEN and the certified values for the certified reference material ranged from 7.3 to 36.9% for compounds with concentrations above the limit of quantification. False positives/negatives were not observed, except for when co-elution occurred. The technique of GC × GC–HRTOFMS in combination with T-SEN provides rapid and accurate screening and represents a powerful new approach for comprehensive analysis.  相似文献   

3.
Multivariate curve resolution-particle swarm optimization (MCR-PSO) algorithm is proposed to exploit pure chromatographic and spectroscopic information from multi-component hyphenated chromatographic signals. This new MCR method is based on rotation of mathematically unique PCA solutions into the chemically meaningful MCR solutions. To obtain a proper rotation matrix, an objective function based on non-fulfillment of constraints is defined and is optimized using particle swarm optimization (PSO) algorithm. Initial values of rotation matrix are calculated using local rank analysis and heuristic evolving latent projection (HELP) method. The ability of MCR-PSO in resolving the chromatographic data is evaluated using simulated gas chromatography–mass spectrometry (GC–MS) and high-performance liquid chromatography–diode array detection (HPLC–DAD) data. To present a comprehensive study, different number of components and various levels of noise under proper constraints of non-negativity, unimodality and spectral normalization are considered. Calculation of the extent of rotational ambiguity in MCR solutions for different chromatographic systems using MCR-BANDS method showed that MCR-PSO solutions are always in the range of feasible solutions like true solutions. In addition, the performance of MCR-PSO is compared with other popular MCR methods of multivariate curve resolution-objective function minimization (MCR-FMIN) and multivariate curve resolution-alternating least squares (MCR-ALS). The results showed that MCR-PSO solutions are rather similar or better (in some cases) than other MCR methods in terms of statistical parameters. Finally MCR-PSO is successfully applied in the resolution of real GC–MS data. It should be pointed out that in addition to multivariate resolution of hyphenated chromatographic signals, MCR-PSO algorithm can be straightforwardly applied to other types of separation, spectroscopic and electrochemical data.  相似文献   

4.
5.
The study proposes an investigation strategy that simultaneously provides detailed profiling and quantitative fingerprinting of food volatiles, through a “comprehensive” analytical platform that includes sample preparation by Headspace Solid Phase Microextraction (HS-SPME), separation by two-dimensional comprehensive gas chromatography coupled with mass spectrometry detection (GC × GC–MS) and data processing using advanced fingerprinting approaches.  相似文献   

6.
A technique using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) is applied to a qualitative analysis of three sample extracts from hair suspected of containing various drug compounds. The samples were also subjected to a quantitative target analysis for codeine, morphine, 6-monoacetylmorphine (6-MAM), amphetamine, methamphetamine, methylenedioxyamphetamine (MDA), methylenedioxymethylamphetamine (MDMA), methadone, and benzylpiperazine (BZP) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). GC × GC/TOFMS provided a non-specific procedure that identified various drugs, metabolites, and impurities not included in the target analysis. They included cocaine, diazepam, and methaqualone (quaalude). Comprehensive GC × GC separation was achieved using twin-stage cryo-modulation to focus eluant from a DB-5ms (5% phenyl) to a BPX50 (50% phenyl) GC column. The TOF mass spectrometer provided unit mass resolution in the mass range m/z 5–1000 and rapid spectral acquisition (≤500 spectra/s). Clean mass spectra of the individual components were obtained using mass spectral deconvolution software. The ‘unknown’ components were identified by comparison with mass spectra stored in a library database.  相似文献   

7.
The objective of the present research is directed towards the optimized use of a 50 μm ID secondary column, in a comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry (GC × GC–qMS) system. The analytical aim was achieved by exploiting a split-flow GC × GC approach, and a rapid-scanning qMS instrument. The stationary phase combination consisted of an apolar (silphenylene polymer) 30 m × 0.25 mm ID column, linked by means of a Y-union, to an MS-connected 1 m × 0.05 mm ID polar one [poly(ethyleneglycol)], and to a 0.20 m × 0.05 mm ID uncoated capillary segment; the latter was connected to a manually operated split-valve. It will be herein demonstrated that the split-flow GC × GC approach, successfully employed in previous H2-based, flame ionization detection experiments, provides equally satisfactory results using mass spectrometric detection and helium as carrier gas. An optimized split-flow GC × GC–qMS method was developed and exploited for the analysis of a perfume sample. The results attained were compared with those observed using the same analytical column combination, but with no flow-splitting. It was found that it is not convenient to employ a 50 μm ID secondary column in a conventional GC × GC–MS instrument. On the contrary, the use a 50 μm ID secondary column, in a split-flow, twin-oven system, provided a good performance. A recently developed comprehensive chromatography software was used for data processing.  相似文献   

8.
The potential of microwave-assisted derivatization techniques in systematic toxicological analysis using gas chromatography coupled with mass spectrometry (GC–MS) was evaluated. Special emphasis was placed on the use of dedicated microwave reactors incorporating online temperature and pressure control. The use of such equipment allowed a detailed analysis of several microwave-assisted derivatization protocols comparing the efficiency of microwave and conventional heating methods utilizing a combination of GC–MS and liquid chromatography coupled with mass detection (LC–MS and LC–MS/MS) techniques. These studies revealed that for standard derivatization protocols such as acetylation (exemplified for codeine and morphine), pentafluoropropionylation (for 6-monoacetylmorphine) and trimethylsilylation (for Δ9-tetrahydrocannabinol) a reaction time of 5 min at 100 °C in a microwave reactor was sufficient to allow for an effective derivatization. Control experiments using standard operating procedures (30 min at 60 °C conventional heating) indicated that the faster derivatization under microwave irradiation is a consequence of the higher reaction temperatures that can rapidly be attained in a sealed vessel and the more efficient heat transfer to the reaction mixture applying direct in core microwave dielectric heating. The results suggest that microwave derivatization procedures can significantly reduce the overall analysis time and increase sample throughput for GC–MS-based analytical methods.  相似文献   

9.
Complementary methods using liquid chromatography–tandem quadrupole mass spectrometry (LC–MS/MS) and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC–TOF-MS) were developed and applied to determine targeted metabolites involved in central carbon metabolism [including tricarboxylic acid cycle, serine cycle, ethylmalonyl-coenzyme A (ethylmalonyl-CoA) pathway and poly-β-hydroxybutyrate cycle] of the bacterium Methylobacterium extorquens AM1 grown on two carbon sources, ethylamine (C2) and succinate (C4). Nucleotides, acyl-CoAs and a few volatile metabolites in cell extracts of M. extorquens AM1 were readily separated using either hydrophilic interaction liquid chromatography or reversed-phase liquid chromatography, and detected with good sensitivity by MS/MS. However, volatile intermediates within a low mass range (<300 m/z), especially at low abundance (such as glyoxylic acid and others <500 nM), were more effectively analyzed by GC × GC–TOF-MS which often provided better sensitivity, resolution and reproducibility. The complementary nature of the LC-based and GC-based methods allowed the comparison of 39 metabolite concentrations (the lowest level was at 139.3 nM). The overlap between the LC-based and GC-based methods of seven metabolites provided a basis to check for consistency between the two methods, and thus provided some validation of the quantification accuracy. The abundance change of 20 intermediates further suggested differences in pathways linked to C2 and C4 metabolism.  相似文献   

10.
The gas chromatographic–mass spectrometric (GC–MS) separation of all 209 polychlorinated biphenyl (PCB) congeners was studied on an extremely efficient 80 m × 0.1 mm i.d. capillary column coated with a 0.1 μm film of poly(5%-phenyl methyl)siloxane stationary phase. The quality of the separation and the number of resolved and coeluting peaks were compared to predictions according to the statistical overlap theory (SOT) and to literature data on PCB separations obtained by one-dimensional and comprehensive two-dimensional GC (GC × GC) and GC–MS. Mass spectral and chemometric deconvolution procedures were used to resolve overlapping peaks. On the highly efficient column, 195 PCB congeners were resolved in 96 min separation time using spectral and chemometric deconvolution. This number is comparable to the best separations described in GC × GC–MS mode. The novel method was developed for spectral deconvolution of overlapped PCB congeners which was verified determining the most toxic, dioxin-like PCBs both in the model mixture of 209 PCBs as well as in the Aroclor 1242 and Aroclor 1254 formulations.  相似文献   

11.
An automated, simple and sensitive method based on selective pressurized liquid extraction (SPLE) was developed for the analysis of polycyclic aromatic hydrocarbons in sewage sludge samples. The new sample preparation procedure consists of on-line clean-up by inclusion of sorbents in the extraction cell, and combines elevated temperatures and pressures with liquid solvents to achieve fast and efficient removal of target analytes from complex sewage sludge matrices. The effects of various operational parameters (e.g. sample pretreatment, extraction solvent, temperature, pressure, static time, etc.) on the performance of SPLE procedure were carefully investigated, obtaining the best results when SPLE conditions were fixed at 140 °C, 1500 psi, static time of 5 min and n-hexane as extraction solvent. A new programmed temperature vaporization–gas chromatography–tandem mass spectrometry method based on large volume injection (PTV–LVI–GC–MS/MS) was also developed and analytical determinations were performed by high performance liquid chromatography coupled with fluorescence detection and GC–MS/MS. The extraction yields for the different compounds obtained by SPLE ranged from 84.8% to 106.6%. Quantification limits obtained for all of these studied compounds (between 0.0001 and 0.005 μg g−1, dry mass) were well below the regulatory limits for all compounds considered. To test the accuracy of the SPLE technique, the optimized methodology was applied to the analysis of a certified reference material (sewage sludge (BCR088)) and a reference material (sewage sludge (RTC-CNS312-04)), with excellent results.  相似文献   

12.
In this work, a methodology to characterise the volatile and semi-volatile compounds from marine salt by headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC/TOFMS) was developed. Samples from two saltpans of Aveiro, in Portugal, with diverse locations, obtained over three years (2004, 2005, and 2007) were analysed. A 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane SPME fibre was used. The volatiles present in the headspace of the solid salt samples (crystals) were equilibrated overnight at 60 °C and extracted for 60 min prior to injection in the GC × GC/TOFMS. 157 compounds, distributed over the chemical groups of hydrocarbons, aldehydes, esters, furans, haloalkanes, ketones, ethers, alcohols, terpenoids, C13 norisoprenoids, and lactones were detected across the samples. Furans, haloalkanes and ethers were identified for the first time in marine salt. The large number of co-elutions on the first column that were resolved by the GC × GC system revealed the complexity of marine salt volatile composition. The existence of a structured 2D chromatographic behaviour according to volatility, in the first dimension (1D), and primarily polarity, in the second dimension (2D), was demonstrated, allowing more reliable identifications. The resolution and sensitivity of GC × GC/TOFMS enabled the separation and identification of a higher number of volatile compounds compared to GC–qMS, allowing a deeper characterisation of this natural product.  相似文献   

13.
This paper presents the preparation of a candidate certified reference material (CRM) of cypermethrin in green tea, GLHK-11-01a according to the requirements of ISO Guide 34 and 35. Certification of the material was performed using a newly developed isotope dilution mass spectrometry (IDMS) approach, with gas chromatography high resolution mass spectrometry (GC–HRMS) and gas chromatography–tandem mass spectrometry (GC–MS/MS). Statistical analysis (one-way ANOVA) showed excellent agreement of the analytical data sets generated from the two mass spectrometric detections. The characterization methods have also been satisfactorily applied in an Asia-Pacific Metrology Program (APMP) interlaboratory comparison study. Both the GC–HRIDMS and GC–IDMS/MS methods proved to be sufficiently reliable and accurate for certification purpose. The certified value of cypermethrin in dry mass fraction was 148 μg kg−1 and the associated expanded uncertainty was 14 μg kg−1. The uncertainty budget was evaluated from sample in homogeneity, long-term and short-term stability and variability in the characterization procedure. GLHK-11-01a is primarily developed to support the local and wider testing community on need basis in quality assurance work and in seeking accreditation.  相似文献   

14.
Comprehensive two-dimensional gas chromatography (GC × GC) offers an interesting tool for profiling bacterial fatty acids. Flow modulated GC × GC using a commercially available system was evaluated, different parameters such as column flows and modulation time were optimized. The method was tested on bacterial fatty acid methyl esters (BAMEs) from Stenotrophomonas maltophilia LMG 958T by using parallel flame ionization detector (FID)/mass spectrometry (MS). The results are compared to data obtained using a thermal modulated GC × GC system. The data show that flow modulated GC × GC-FID/MS method can be applied in a routine environment and offers interesting perspectives for chemotaxonomy of bacteria.  相似文献   

15.
This paper reports the conditions of online hyphenation of supercritical fluid chromatography (SFC) with twin comprehensive two-dimensional gas chromatography (twin-GC × GC) for detailed characterization of middle distillates; this is essential for a better understanding of reactions involved in refining processes. In this configuration, saturated and unsaturated compounds that have been fractionated by SFC are transferred on two different GC × GC columns sets (twin-GC × GC) placed in the same GC oven. Cryogenic focusing is used for transfer of fractions into the first dimension columns before simultaneous GC × GC analysis of both saturated and unsaturated fractions. The benefits of SFC–twin-GC × GC are demonstrated for the extended alkane, iso-alkane, alkene, naphthenes and aromatics analysis (so-called PIONA analysis) of diesel samples which can be achieved in one single injection. For that purpose, saturated and unsaturated compounds have been separated by SFC using a silver loaded silica column prior to GC × GC analysis. Alkenes and naphthenes are quantitatively recovered in the unsaturated and saturated fractions, respectively, allowing their identification in various diesel samples. Thus, resolution between each class of compounds is significantly improved compared to a single GC × GC run, and for the first time, an extended PIONA analysis of diesel samples is presented.  相似文献   

16.
The initialization of concentration vector for iterative target transformation factor analysis (ITTFA) and identification of pure or key variables are the important issue in MCR. In this study, dissimilarity analysis and evolving factor analysis (EFA) are combined to find the selective or key variables and subsequently obtain initial estimates of the concentration vectors for resolution of gas chromatography/mass spectrometry (GC/MS) data by ITTFA. For systems containing components with highly similar mass spectra, a new constraint setting the elements out of elution window to 0 is used to improve convergence rate and accuracy of results. Tested by standard mixture of two wax esters and real GC/MS data of gasoline 97#, dissimilarity based ITTFA could obtain accurate results (average Dot product of concentration vectors, average deviation of peak area ratio and average similarity of mass spectra are 0.9929, 0.0228 and 981.0, respectively).  相似文献   

17.
Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants used globally in many consumer products and industrial applications. Traditionally, gas chromatography–high resolution mass spectrometry (GC–HR-MS) is the method of choice for analysis of PBDEs in environmental samples because it offers high sensitivity and selectivity, resulting in less interferences. However, the specificity offered by gas chromatography-triple quadrupole tandem mass spectrometry (GC–QQQ-MS/MS), operated in selected reaction monitoring mode, provides a more affordable alternative to GC–HR-MS for the analysis of PBDEs in complex environmental samples. In this study, an analytical method was developed for the analysis of 41 PBDE congeners in fish using GC–QQQ-MS/MS. Results from the analysis of three fish species [lake trout (Salvelinus namaycush), yellow perch (Perca flavescens), and round goby (Neogobius melanostomus)] using GC–QQQ-MS/MS were compared with those obtained by GC–HR-MS. These species were selected because they represent varying levels of lipid-rich matrix and contaminant loads. Instrumental limits of detection for the GC–QQQ-MS/MS ranged from 0.04 pg to 41 pg, whereas those for the GC–HR-MS ranged from 5 pg to 85 pg. The PBDE values obtained from these two methods were highly correlated, R2 values >0.7, for all three fish species, supporting the suitability of GC–QQQ-MS/MS for analysis of PBDEs in fish with varying fat content.  相似文献   

18.
Phthalates (PAEs) are ubiquitous toxic chemical compounds. During the last few years, some phthalate metabolites (MPAEs) have been proposed as appropriate biomarkers in human urine samples to determine PAE human intake and exposure. So, it is necessary to have fast, easy, robust and validated analytical methods to determine selected MPAEs in urine human samples. Two different instrumental methods based on gas (GC) and ultra-high performance liquid (UHPLC) chromatography coupled to mass spectrometry (MS) have been optimized, characterized and validated for the simultaneous determination of nine primary and secondary phthalate metabolites in urine samples. Both instrumental methods have similar sensitivity (detection limits ranged from 0.03 to 8.89 pg μL−1 and from 0.06 to 0.49 pg μL−1 in GC–MS and UHPLC–MS2, respectively), precision (repeatability, expressed as relative standard deviation, which was lower than 8.4% in both systems, except for 5OH-MEHP in the case of GC–MS) and accuracy. But some advantages of the UHPLC–MS2 method, such as more selectivity and lower time in the chromatographic runs (6.8 min vs. 28.5 min), have caused the UHPLC–MS2 method to be chosen to analyze the twenty one human urine samples from the general Spanish population. Regarding these samples, MEP showed the highest median concentration (68.6 μg L−1), followed by MiBP (23.3 μg L−1), 5cx-MEPP (22.5 μg L−1) and MBP (19.3 μg L−1). MMP (6.99 μg L−1), 5oxo-MEHP (6.15 μg L−1), 5OH-MEHP (5.30 μg L−1) and MEHP (4.40 μg L−1) showed intermediate levels. Finally, the lowest levels were found for MBzP (2.55 μg L−1). These data are within the same order of magnitude as those found in other similar populations.  相似文献   

19.
Doping control screening based on the enhanced resolution of comprehensive two-dimensional (2D) gas chromatography hyphenated to time of flight mass spectrometer was investigated. The identification of anabolic agents (clenbuterol, norandrosterone, epimetendiol, two methyltestosterone metabolites and 3′-hydroxystanozolol) contained in a spiked urine sample (2 ng/ml) was demonstrated. Special emphasis was given to 3′-hydroxystanozolol, mainly considering the difficulty in its detection. In contrast to conventional GC–MS approaches that must use single-ion monitoring, the GC × GC–TOFMS method enabled the identification of that metabolite through the deconvolution of the full mass spectrum and also resolved the co-eluted peaks of 3′-hydroxystanozolol and an endogenous component.  相似文献   

20.
Comprehensive two-dimensional gas chromatography (GC × GC) was applied to the study of cachaça production. Effects of bidistillation, and the use of charcoal filtration in the production of artisan cachaça, as well as the effects of multi-distillation on volatile products in commercial cachaça were investigated. Volatile compounds were collected and concentrated onto a polyacrylate solid-phase microextraction fibre, and analyzed using GC × GC on a non-polar (BPX5)–polar (BP20) column set. More than 100 compounds, comprising various homologous series were tentatively identified using MS library matching and comparison with retention indices. Phthalate organic contamination following the use of ion exchange resin for removal of copper ion was evident. Charcoal successfully removes this contamination product. Prediction of compounds within particular homologous series aids component identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号