首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The support materials play a critical role for the electrocatalytic oxidation of ethanol on precious metal catalysts in fuel cells. Here, we report the poly(3,4-ethylenedioxythiophene) combined with reduced graphene oxide (PEDOT-RGO) as the support of Pd nanoparticles (NPs) for ethanol electrooxidation in alkaline medium. The as-prepared Pd/PEDOT-RGO composite catalysts are characterized by Raman spectrometer, X-ray diffraction, transmission electron microcopy, and scanning electron microcopy. PEDOT-RGO composite with the porous structure facilitates the dispersion of Pd NPs with a smaller size leading to the increase of electrochemical active surface area. The electrochemical properties and electrocatalytic activities of Pd/PEDOT-RGO hybrid are evaluated by cyclic voltammetry, chronoamperometry, CO stripping voltammetry, electrochemical impedance spectroscopy (EIS) and Tafel analysis. The results suggest that Pd/PEDOT-RGO hybrid shows a higher electrocatalytic activity, a better long-term stability, and the poisoning tolerance for the ethanol electrooxidation than Pd on carbon black. EIS and Tafel analysis indicate that PEDOT-RGO improves the kinetics of ethanol electrooxidation on the Pd NPs and is an efficient support in fuel cells.  相似文献   

2.
Novel electrochemical DNA‐sensor based on glassy carbon electrode (GCE) modified with Ag nanoparticles, Neutral red covalently attached to its surface and native DNA adsorbed on modifier coating was developed for the estimation of DNA damage on example of model system based on Fenton reagent. As was shown, the oxidation process resulted in synchronous increase of electron transfer resistance and capacitance measured by electrochemical impedance spectroscopy (EIS). The contribution of each sensor component on the signal was specified and sensitivity estimated against similar surface coatings. The shift of EIS parameters was found to be higher than that of similar biosensors reported. The DNA sensor was tested on the estimation of antioxidant capacity of green tea infusions again the results of coulometric titration with electrogenerated bromine.  相似文献   

3.
Mediator free enzyme sensor has been fabricated by covalently immobilizing cholesterol oxidase (ChOx) onto 11‐mercaptoundecanoic acid functionalized gold nanoparticles (MUDA‐AuNPs) – octadecylamine (ODA) hybrid Langmuir–Blodgett film. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies reveal that MUDA‐AuNP/ODA LB film has good affinity for ChOx and provides favorable microenvironment for direct electron transfer between enzyme and electrode. Interference free estimation of cholesterol has been realized at 0.3 V with linear range from 25 to 500 mg/dL, detection limit of 23.38 mg/dL, sensitivity of 1.085 μA mM?1 and response time of 20 s at pH 7.0.  相似文献   

4.
The purpose of the current study is to simulate the behavior of a solid oxide fuel cell (SOFC) anode under sinusoidal excitation. The obtained harmonic response is used as a base for electrochemical impedance spectra simulation. The electrochemical impedance spectroscopy (EIS) is a powerful non-destructive tool for SOFC researches. In order to evaluate the EIS experimental results, efforts are devoted to develop EIS numerical simulation tools. In this study, a planar SOFC is modeled, and the steady state behavior and frequency response, as well as the electrochemical spectra of the anode, are obtained. The developed model couples the electrochemical kinetics with mass transport. The Butler–Volmer equation is used for the anode electrochemistry, and the species equations are used for gas transport in the anode channel. In order to solve the system of the nonlinear equations, an in-house code based on finite difference method is developed and utilized. A parametric study is also carried out, and the results are discussed. The simulation results are in good agreement with published data. Results show a capacitive semicircle in the Nyquist plot, which is identical to the gas diffusion impedance as reported in literatures.  相似文献   

5.
应用旋转圆盘电极和电化学阻抗法研究了二茂铁在Tris-NaC l(pH=7.2)缓冲溶液中于旋转玻碳电极上的电化学阻抗行为及其与DNA的相互作用.结果表明,二茂铁于旋转电极的伏安曲线呈现明显的极限电流平阶,而其交流阻抗谱则出现两个电容弧.二茂铁与DNA的作用,若受扩散过程控制则其极限扩散电流随DNA浓度增大而减小,而在电化学控制过程中则表现为电化学反应电阻随DNA浓度增大而增大.根据旋转圆盘电极和电化学阻抗谱测试,表明由这两种方法数据拟合求得的二茂铁条件电位速率常数能够很好地相互吻合,但如存在DNA时,则其条件电位速率常数有一定程度的减小.  相似文献   

6.
In the present paper, we focus on the influence of sulfate ion impurity and dissolved hydrogen on the protective ability of the oxide film on stainless steel in high-temperature water. For the purpose, the electrical and electrochemical properties of oxide films formed on AISI 316L NG in simulated boiling water reactor crack conditions (10 ppm sulfate purged with N2 + 0.01 or 0.5% H2) were characterized by in situ electrochemical impedance spectroscopy (EIS). In addition, the surface and in-depth composition of the oxide films has been estimated by ex situ Auger electron spectroscopy (AES). The quantitative assessment of the protective ability of the oxide is based on an interpretation of the electrochemical impedance data per the mixed-conduction model. A novel procedure for the estimation of kinetic and transport parameters that involves comparison of the model equations to both EIS and AES results is proposed and tested. Based on the parameter values, the effect of sulfate and dissolved hydrogen on the processes of film growth and dissolution is discussed in view of an approach to the initiation of stress corrosion cracks.  相似文献   

7.
A methodology to analyse electrochemical impedance spectroscopy (EIS) data for the study of microbiologically induced corrosion is proposed. The proposed methodology is based on the loss tangent behaviour of EIS spectra for sterile and bacteria-inoculated environments. Loss tangent parameters were obtained by fitting the EIS data to the Cole–Cole dispersion model using a genetic algorithm. Two electrochemical cells were implemented to expose carbon steel probes to sterile and inoculated media for two bacteria consortia, acid-producing bacteria (APB) and sulphate-reducing bacteria (SRB). The APB tests were exposed for 96 h and the SRB tests for 144 h. A microbial count was carried out during each experiment. The EIS spectra were measured during exposure for sterile and inoculated media. The spectra were fitted to a multi Cole–Cole dispersion model, and loss tangent parameters were obtained.  相似文献   

8.
A simple electrochemical approach is developed to prepare reduced graphene oxide (RGO)-wrapped carbon fiber (CF) as a novel support for Pt–Au nanocatalysts. The obtained composite electrodes have been characterized by scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDX), thermal gravimetric analysis (TGA), and electrochemical methods. SEM images reveal that the Pt–Au nanoparticles deposited on RGO-wrapped CF (RGO/CF) electrode display smaller particle size and more uniform dispersion than those on the bare CF electrode. Cyclic voltammetry, linear sweep voltammetry, chronoamperometry, chronopotentiometry, Tafel plots, and electrochemical impedance spectroscopy (EIS) analyses demonstrate that the introduced RGO on CF electrode surface is beneficial to the dispersion of Pt–Au nanoparticles, as a consequence, to the enhancement of the electrocatalytic activity and the antipoisoning ability of Pt–Au towards formic acid electrooxidation.  相似文献   

9.
Electrochemical impedance spectroscopy (EIS) is a powerful technique to study electrochemical processes and to perform screening tasks. Recently an integrated measuring and modeling methodology for EIS based on a multisine excitation signal was developed. A key issue in this methodology is the data analysis, allowing us to rapidly quantify the reliability of the measured data. In this paper, a comparison is made between classical single‐sine and the proposed multisine measurements on the same system. The fitting of the impedance data obtained by single‐or multisine excitation and using different weighting factors is also discussed. In addition to the advantages reported in earlier work, it is concluded that, of all investigated frequencies, the odd random phase multisine excitation yields the highest quality data in the shortest measurement time.  相似文献   

10.
Electrochemical impedance spectroscopy (EIS) is a powerful technique that is used for characterizing electrochemical systems. The EIS data can be correlated with many key physical properties, including rates of diffusion and reaction, and microstructural features. However, the EIS analysis is prone to the potential ambiguities in interpretation. Judicious modeling and its combination with statistics can be used to overcome these challenges and enhance the insight one can gain from EIS.  相似文献   

11.
Impedance analysis of electrochemically prepared WO3 films has been carried out in order to investigate the applicability of the diffusion-trapping model to the analysis of impedance spectra related to electrochemical hydrogen insertion. The impedance spectra measured under different conditions have been analyzed by using CNLS fitting. It has been shown, that the expressions derived for the diffusion-trapping model adequately describe the impedance response of the system. Despite of the great number of adjustable parameters many of them could be determined with a good statistics, and reasonable estimated mean values have been obtained for the others. The reliability of the estimated parameters was checked by comparing the results with existing experimental data.  相似文献   

12.
In this study, a novel ion conductive polyimide (PI) nanofiber reinforced photocured hybrid electrolyte has been fabricated. Polyimide fibers were fabricated with the reaction between 4,4′‐oxydianiline (ODA) and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA) followed by electrospinning and thermal imidization methods. Then, PI electrospun fibers were dipped into hybrid resin formulation containing bisphenol A ethoxylate dimethacrylate (BEMA), poly (ethylene glycol) methyl ether methacrylate (PEGMA) and 3‐(methacryloyloxy) propyltrimethoxysilane (MEMO) and then photocured to prepare PI nanofiber reinforced electrolyte membrane. Photocured membranes were soaked into lithium hexafluorophosphate (LiPF6) before measuring electrochemical stability and ionic conductivity of hybrid polyelectrolyte. The chemical structure and electrochemical performance of the electrolytes were examined by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV) and scanning electron microscopy (SEM) analysis. The incorporation of MEMO into organic matrix effectively increased the modulus from 2.83 to 5.91 MPa. The obtained results showed that a suitable electrolyte for Li‐ion batteries with high lithium uptake ratio, high conductivity (7.2 × 10?3 S cm?1) at ambient temperature and wide stability window above 5.5 V had been prepared. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
采用差热-热重(TG-DTA)、恒电流充放电和交流阻抗(EIS)分析了二氟草酸硼酸锂(LiODFB)的热稳定性,研究了LiODFB/碳酸乙烯酯(EC)+碳酸二甲酯(DMC)电解液的电化学性能及界而特征.实验结果表明,LiODFB不仅具有更高的热稳定性,而且在EC+DMC溶剂中具有较好的电化学性能.与使用LiPF6/EC+DMC的电解液相比,锂离子电池应用LiODFB基电解液在55℃的高温具有更好的容量保持能力;以0.5C、1C(1C=250 mA·g-1)倍率循环放电,两种电池间的倍率性能差别较小;LiODFB能够在1.5 V(vs Li/Li+)左右在石墨电极表面还原形成一个优异稳定的保护性固体电解质相界面膜(SEI膜);交流阻抗表明,使用LiODFB基电解液的锂离子电池仅具有稍微增加的界面阻抗.因此LiODFB是一种非常有希望替代LiPF6用作锂离子电池的新盐.  相似文献   

14.
We demonstrate a novel impedimetric approach providing unprecedented insight into characteristic properties of dielectric thin films covering electrode surfaces. The concept is based on the joint interpretation of electrochemical impedance spectroscopy (EIS) together with dielectrometry (DEM) whose informative value is mutually interconnected. The advantage lies in the synergistic compensation of individual shortcomings adversely affecting conventional impedimetric analysis strategies relying exclusively on either DEM or the traditional EIS approach, which in turn allows a reliable determination of thickness and permittivity values. The versatility of the method proposed is showcased by an in-situ growth-monitoring of a nanoporous, crystalline thin film (HKUST-1) on an interdigitated electrode geometry.  相似文献   

15.
Active corrosion protection based on self-healing of defects in coatings is a vital issue for development of new advanced corrosion protection systems. However, there is a significant lack of experimental protocols, which can be routinely used to reveal the self-healing ability and to study the active corrosion protection properties of organic and hybrid coatings.The present work demonstrates the possibility to use EIS (electrochemical impedance spectroscopy) for investigation of the self-healing properties of protective coatings applied on a metal surface. The model EIS experiments supported by SVET (scanning vibrating electrode technique) measurements show that an increase of low frequency impedance during immersion in the corrosive medium is related to the suppression of active corrosion processes and healing of the corroded areas. Thus, EIS can effectively be employed as a routine method to study the self-repair properties of different protective systems. The 2024 aluminium alloy coated with hybrid sol–gel film was used as a model system to study the healing of artificial defects by an organic inhibitor (8-hydroxyquinoline).  相似文献   

16.
A new method for measuring local interfacial impedance properties with high lateral resolution was developed by combination of electrochemical impedance spectroscopy (EIS) with scanning electrochemical microscopy (SECM). Alternating current scanning electrochemical microscopy (AC-SECM) allowed to identify and visualise microscopic domains of different conductivity/electrochemical activities on solid/liquid interfaces immersed into an electrolyte. The performance of the method was illustrated by imaging an array of Pt-band microelectrodes in solutions of low conductivity in the absence of any redox mediator.  相似文献   

17.
A new electrochemical immunosensor for the detection of α‐1‐fetoprotien (AFP) was developed based on AFP antibody (anti‐AFP)‐functionalized organic/inorganic hybrid nanocomposite membrane. To fabricate such a hybrid composite membrane, 3,4,9,10‐perylenetetracarboxylic acid‐bound thionine molecules (PTCTH) were initially doped into titania colloids (TiO2), and then gold nanoparticles and anti‐AFP were immobilized onto the composite film in turn. Comparison with the electrode fabricated only with thionine not 3,4,9,10‐perylenetetracarboxylic acid, the immunosensor with PTCTH exhibited high sensitivity and fast electron transfer. The presence of gold nanoparticles provided a good microenvironment for the immobilization of biomolecules, enhanced the surface coverage of protein, and improved the sensitivity of the immunosensor. The modified process was characterized by scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The surface topography of the membrane was investigated by scanning electron microscopy (SEM). Under optimal conditions, the proposed immunosensor exhibited a wide linear range from 2.5 to 200.0 ng/mL towards AFP with a detection limit of 0.5 ng/mL (S/N=3). The stability, reproducibility and precision of the immunosensor were acceptable. Comparison with the conventional enzyme‐linked immunosorbent assay (ELISA), the present method did not require more labeled procedures and washing steps. Significantly, the detection methodology provides a promising approach for other proteins or biosecurities.  相似文献   

18.
以铜片和锌片为基材,复合电镀制得Cu-PTFE(聚四氟乙烯)和Zn-PTFE疏水性复合电极,并将复合电极应用于苯甲酸的电化学还原行为研究。测定了复合电极在电解液中的Tafel极化曲线、循环伏安、电极稳定性和交流阻抗等电化学参数。结果表明,在苯甲酸电还原制备苯甲醛中,Cu-PTFE复合电极相对于Zn-PTFE复合电极具有较高的催化活性,其电还原产率分别为88.4%和79.2%,因此,Cu-PTFE复合电极有望成为苯甲酸电化学还原制备苯甲醛的电极材料。电化学行为的研究结果显示,苯甲酸在疏水性复合电极上的电还原过程可能只受电子迁移过程控制。  相似文献   

19.
A simple assay based on electrochemical impedance spectroscopy (EIS) for detection of telomerase activity is developed, and it is demonstrated that the label-free EIS method is capable of detecting the telomerase activity in HeLa cells with a detection limit of 1000 HeLa cells without using any amplification technique.  相似文献   

20.
以水杨酸为模板剂和还原剂,采用水热法制备得到了一种MoO3纳米带/RGO复合材料。利用XRD、SEM、TEM、拉曼光谱、恒流充放电、交流阻抗等手段对样品的结构、形貌以及电化学性能进行表征。测试结果表明,MoO3纳米带/RGO复合材料作为锂离子电池负极材料,在50mA·g-1的电流密度下可逆比容量为1000mAh·g-1,循环50次后比容量还保持在950mAh·g-1,相比于MoO3纳米带其容量保持能力和循环性能得到了显著改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号