首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Wang D  Wang Q  Zhang Z  Chen G 《The Analyst》2012,137(2):476-480
ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.  相似文献   

2.
Solid-phase microextraction (SPME) has been applied to the quantitative analysis of 60 volatile organic compounds (VOCs) in drinking water. Equilibration curves for the partitioning of the VOCs between the fiber coating and fortified water obtained at 20, 50, and 80 °C are found between the theoretical curves for completely agitated and non-agitated samples. Two important factors for the amount adsorbed by the SPME fiber coating are the extraction time and the fiber coating/water distribution coefficient, KFW . Both depend on the sample temperature, but in a counteracting manner: Increasing the temperature shortened the equilibration times, especially for the heavier VOCs, but also lead to lower KFW values, and consequently a lower sensitivity of the method. KFW values are determined for 33 of the VOCs at 40, 60, and 80°C and the heats of adsorption,–ΔH, are calculated. The nature of the adsorption is found to be exothermic which explains the decreasing sensitivity of the method with increasing temperature. Detection limits were typically from 20 ng/l to 200 ng/l, except for the very light VOCs with which detection difficulties were encountered. For all of the VOCs the linear range extended from the lowest concentration at which they were actually detected to at least 5 mg/l. The precision, 3% average standard deviation when an internal standard was used, was satisfactory for most quantitative routine analysis. SPME was also applied to head-space (HS) analysis of drinking water through the coupled equilibrium between water/head-space/fiber coating. HS-SPME is demonstrated to have shorter equilibration times than SPME directly from the water and equal sensitivities, except for the very light VOCs. Water samples from a drinking water plant contaminated in the low μg/l range with 1,1,1-trichloroethane, trichloroethene and tetrachloroethene were analyzed. There seems to be a reasonable agreement between results obtained by SPME and purge & trap. It is concluded that SPME has a great potential for drinking water analysis.  相似文献   

3.
The complex aroma of wine is derived from many sources, with grape-derived components being responsible for the varietal character. The ability to monitor grape aroma compounds would allow for better understanding of how vineyard practices and winemaking processes influence the final volatile composition of the wine. Here, we describe a procedure using GC–MS combined with headspace solid-phase microextraction (HS-SPME) for profiling the free volatile compounds in Cabernet Sauvignon grapes. Different sample preparation (SPME fiber type, extraction time, extraction temperature and dilution solvent) and GC–MS conditions were evaluated to optimize the method. For the final method, grape skins were homogenized with water and 8 ml of sample were placed in a 20 ml headspace vial with addition of NaCl; a polydimethylsiloxane SPME fiber was used for extraction at 40 °C for 30 min with continuous stirring. Using this method, 27 flavor compounds were monitored and used to profile the free volatile components in Cabernet Sauvignon grapes at different maturity levels. Ten compounds from the grapes, including 2-phenylethanol and β-damascenone, were also identified in the corresponding wines. Using this procedure it is possible to follow selected volatiles through the winemaking process.  相似文献   

4.
In this study, the feasibility of GC–MS was evaluated for the quantification of odorous volatile organic compounds (VOCs) in environmental samples. These included methyl ethyl ketone, isobutyl alcohol, methyl isobutyl ketone, and butyl acetate plus benzene, toluene, and xylene (BTX). For this purpose, the gaseous standard for these VOCs were analyzed by GC–MS with the aid of both direct injection (DI) into the GC injector and solid-phase microextraction (SPME). The liquid phase standard prepared independently was tested additionally by the DI method as a reference to gaseous calibration. The detection limit (DL) values, when tested for basic quality assurance in this study, showed large differences between DI (0.002–0.007 ng) and SPME method (1.03–1.81 ng) in terms of absolute mass. The DL values, when expressed in terms of concentration (v/v), showed considerable improvement in SPME (below 0.40 nmol mol−1) relative to the DI method (∼6–15 nmol mol−1). The reliability of the GC–MS method was further validated through an analysis of real environmental samples collected from an industrial area.  相似文献   

5.
The calix[4] open-chain crown ether, 5,11,17,23-tetra-tert-butyl-25,27-di(2-allyloxyethoxyl)-26,28-dihydroxycalix[4]arene was synthesized and used for preparation of solid-phase microextraction (SPME) fibers of enhanced extraction efficiency. The new SPME coating made from calix[4] open-chain crown ether and hydroxyl-terminated silicone oil was developed with the aid of vinyltriethoxylsilane as bridge using sol-gel method and cross-linking technology. The efficiency of the novel fiber in the extraction of polar aromatic and aliphatic compounds, such as phenols, alcohols, and volatile fatty acids, was also investigated. Due to the introduction of the polar open-chain crown ether in calix[4]arene molecules, the calix[4] open-chain crown ether fiber showed much better selectivity and sensitivity to these polar compounds in comparison with calix[4]arene fiber. It also had superior extraction efficiency when compared to commercial poly(dimethylsiloxane)-divinylbenzene and polyacrylate fibers. Parts per billion to parts per trillion level detection limits were achieved for most of the analytes through SPME in conjunction with GC and flame ionization detector. The linear ranges were two to four orders of magnitude, and the RSD values were below 7% for all analytes. The novel fiber was applied to determine volatile alcohols and fatty acids in wine samples. The volatile-free wine prepared in this work was used to assure similar chemical environment for analytes in both calibration solutions and in real wine samples, thus compensating for possible matrix interferences. The established internal standard method using 4-methyl-2-pentanol as internal standard showed satisfactory accuracy and precision.  相似文献   

6.
Solid-phase extraction (SPE) procedure on octadecylsilica (C18) was developed for accumulation of volatile compounds from grape distillates. The procedure was optimised for final analysis by capillary gas chromatography. At mass concentrations in model solutions ranging from 0.1 to 50 mg/l solid-phase extraction recoveries of all analytes ranged from 69% for 2-phenylethanol to 102% for capric acid, with RSD values from 2 to 9%. SPE recoveries of internal standards to be added in the sample solution prior to extraction, higher alcohols 2-ethyl-1-hexanol and 1-undecanol, were 97 and 93%, respectively, with RSD values of 3%. Detection limits of analyzed compounds in model solutions ranged from 0.011 mg/l for isoamyl acetate to 0.037 mg/l for caproic acid. Method efficiency was tested in relation to acetic acid content, volume fraction of ethanol and possible matrix effects. A significant influence of matrix on SPE efficiency for geraniol, cis-2-hexen-1-ol and cis-3-hexen-1-ol was detected. For the same reason, 2-phenylethanol could not be determined by developed SPE method in samples of grape distillates. The developed solid-phase extraction method was successfully applied to determine the differences in volatile compound content in different grape distillates produced by the distillation of crushed, pressed and fermented grapes.  相似文献   

7.
Metal-organic frameworks (MOFs) have received great attention as novel sorbents due to their fascinating structures and intriguing potential applications in various fields. In this work, a MIL-101(Cr)-coated solid-phase microextraction (SPME) fiber was fabricated by a simple direct coating method and applied to the determination of volatile compounds (BTEX, benzene, toluene, ethylbenzene, m-xylene and o-xylene) and semi-volatile compounds (PAHs, polycyclic aromatic hydrocarbons) from water samples. The extraction and desorption conditions of headspace SPME (HS-SPME) were optimized. Under the optimized conditions, the established methods exhibited excellent extraction performance. Good precision (<7.7%) and low detection limits (0.32–1.7 ng L−1 and 0.12–2.1 ng L−1 for BTEX and PAHs, respectively) were achieved. In addition, the MIL-101(Cr)-coated fiber possessed good thermal stability, and the fiber can be reused over 150 times. The fiber was successfully applied to the analysis of BTEX and PAHs in river water by coupling with gas chromatography–mass spectrometry (GC–MS). The analytes at low concentrations (1.7 and 10 ng L−1) were detected, and the recoveries obtained with the spiked river water samples were in the range of 80.0–113% and 84.8–106% for BTEX and PAHs, respectively, which demonstrated the applicability of the self-made fiber.  相似文献   

8.
The linear solvation energy relationship (LSER) model was used to characterize interactions responsible for sorption of volatile organic compounds (VOCs) in air samples on six different solid-phase microextraction (SPME) fibers at 296K and zero relative humidity. The polydimethylsiloxane and polyacrylate fibers sorption data were also modeled at different relative humidities in the range of 10-90% and influence of water vapors on the extraction process is discussed. The LSER equations were obtained by a multiple regression of the distribution coefficients of 14 probe solutes on an appropriate SPME fiber against the solvation parameters of the solutes. The derived LSER equations successfully predicted the VOC distribution coefficients and the selectivity of individual SPME fibers for the various volatile solutes. The LSER approach coupled with SPME is a relatively simple and reliable tool to rapidly characterize the sorption mechanism of VOCs with various stationary phases and may potentially be applied to design and test new chromatographic materials for sampling or separation of VOCs.  相似文献   

9.
In this work, a novel, simple and efficient method based on solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed to the analysis of volatile organic chemicals (VOCs) in mainstream cigarette smoke (MCS). Using a simple home-made smoking machine device, extraction and concentration of VOCs in MCS were performed by SPME fiber, and the VOCs adsorbed on fiber were desorbed, and analyzed by GC-MS. The extraction fiber types and the desorption conditions were studied, and the method precision was also investigated. After the investigation, the optimal fiber was divinylbenzene/carboxen/polydemethylsiloxane (DVB/CAR/PDMS), and the optimal desorption condition was 250 degrees C for 3 min. The method precision was from 2% to 11%. Finally, the proposed method was tested by its application of the analysis of VOCs in MCS from 10 brands of cigarettes and one reference cigarette. A total of 70 volatile compounds were identified by the proposed method. The experimental results showed that the proposed method was a simple, rapid, reliable, and solvent-free technique for the determination of VOCs in MCS.  相似文献   

10.
11.
This work presents the usefulness of five different solid-phase microextraction fibers in the screening of volatile organic compound (VOC) traces in air samples. The performances of these fibers are compared by studying the sorption kinetics in an equimolar gaseous mixture of eleven VOCs. For each fiber, static and dynamic sampling are compared. It is shown that repeatability is better for the dynamic mode (less than 6% for dynamic sampling and 10% for static sampling). The equilibrium time and the sensitivity vary considerably from one fiber type to another. As an example, the classical polydimethylsiloxane (PDMS) coating presented the shortest equilibration time (5 min) but also the poorest sensitivity, whereas the PDMS-Carboxen showed the longest extraction time but the greatest sensitivity. The estimation of the quantity of VOCs fixed on the target fiber allows for the determination of the different affinities of the compounds with the involved sorbent and relates them with physicochemical properties of the molecules. Competitive sorption is observed for the fibers involved with the adsorption process (i.e., PDMS-divinylbenzene and PDMS-Carboxen fibers). These competitions can lead to SPME calibration problems and thus bad quantitative analysis.  相似文献   

12.
Solid-phase micro-extraction (SPME) was studied as a solvent free alternative method for the extraction and characterization of volatile compounds in intact and plucked flowers of Jasminum sambac at different day time intervals using gas chromatography (GC-FID) and gas chromatography-quadrupole mass spectrometry. The analytes identified included alcohols, esters, phenolic compounds, and terpenoids. The main constituents identified in the flower aroma using different fibers were cis-3-hexenyl acetate, (E)-beta-ocimene, linalool, benzyl acetate, and (E,E)-alpha-farnesene. The benzyl acetate proportion decreased from morning to afternoon and then increased in evening collections. PDMS fiber showed a high proportion of (E,E)-alpha-farnesene in jasmine floral aroma. Among other constituents identified, cis-3-hexenyl acetate, linalool, and benzyl acetate were major aroma contributors in plucked and living flowers extracts using PDMS/DVB, Carboxen/PDMS, and DVB/Carboxen/PDMS fibers. PDMS/DVB recorded the highest emission for benzyl acetate while the (E)-beta-ocimene proportion was highest in DVB/Carboxen/PDMS when compared with the rest. The highest linalool content, with increasing proportion from morning to noon, was found using mixed coating fibers. Almost negligible volatile adsorption was recorded for the polyacrylate fiber for intact flower aroma, whereas it was most effective for benzyl acetate, followed by indole under plucked conditions. Moreover, the highest amounts extracted, evaluated from the sum of peak areas, were achieved using Carboxen/PDMS, and DVB/Carboxen/PDMS. Introduction of a rapid, and solvent free SPME method for the analysis of multicomponent volatiles can be successfully employed to monitor the extraction and characterization of flower aroma constituents.  相似文献   

13.
Hou L  Wen X  Tu C  Lee HK 《Journal of chromatography. A》2002,979(1-2):163-169
We described a new method for the enrichment of basic drugs present in water samples via liquid-phase microextraction (LPME) combined with on-column stacking in capillary electrophoresis. Two steps were employed to enhance the detection sensitivity of four amino alcohols. The analytes were first extracted from aqueous sample (donor solution) that were adjusted to basic through a thin layer of 1-octanol entrapped within the pores of a polypropylene hollow fiber, and then into a 5-microl acidic acceptor solution inside the hollow fiber. The extract was then further enriched through on-column stacking in capillary electrophoresis. With this two-step enrichment procedure, the method provided 72-110-fold preconcentration of the target amino alcohols. The limits of detection were 0.08-0.5 microg/ml. Relative standard deviation (n=6) ranged between 4.3 and 6.9% for the studied drugs utilizing 2-amino-1-phenylethanol as internal standard. The extraction of amino alcohols in spiked urine samples was evaluated using the developed procedure.  相似文献   

14.
A simple, low-cost, and effective cooling/heating-assisted headspace solid-phase microextraction (CHA–HS–SPME) device, capable of direct cooling the fiber to low temperatures and simultaneous heating the sample matrix to high temperatures, was fabricated and evaluated. It was able to cool down the commercial and handmade fibers for the effective tapping of volatile and semi-volatile species in the headspace of complex solid matrices, with minimal manipulation compared with conventional SPME. The CHA–HS–SPME system can create large temperature gaps (up to 200 °C) between the fiber and the sample matrix, because the cooling process is directly applied onto the fiber.  相似文献   

15.
Field air analysis with SPME device   总被引:5,自引:0,他引:5  
Solid-phase microextraction (SPME) devices were used for a wide scope of air-monitoring including field sampling and analysis of volatile organic compounds (VOCs), formaldehyde, and particulate matter (PM) in air. Grab (instantaneous) and time-weighted average (TWA) sampling were accomplished using exposed and retracted SPME fibers, respectively. Sampling time varied from 1 to 75 min, followed by analysis with a gas chromatograph (GC). A portable GC equipped with unique, in-series detectors: photoionization (PID), flame ionization (FID), and dry electrolytic conductivity (DELCD), provided almost real-time analysis and speciation for common VOCs during an indoor air quality surveys. Indoor air samples collected with SPME devices were compared with those collected using conventional National Institute for Occupational Safety and Health (NIOSH) methods. Air concentrations measured with the SPME device were as low as 700 parts-per-trillion (ppt) for semi-volatile organic compounds. SPME methodology proved to be more sensitive than conventional methods, and provided a simple approach for fast, cost-effective sampling and analysis of common VOCs in indoor air. SPME technology combined with fast portable GC reduced the sampling and analysis time to less than 15 min. The configuration offered the conveniences of immediate on-site monitoring and decision making, that are not possible with conventional methods. In addition, SPME fibers were applied to sampling of particulate matter in diesel engine exhaust. Linear uptake and particulate build-up on the fiber were observed. Preliminary research suggests that SPME fibers could also be applied to sampling of airborne particulate matter.  相似文献   

16.
The results of gas-phase conversion of ω-phenyl-substituted alcohols (benzyl alcohol, 2-phenylethanol, 3-phenyl-1-propanol) and their equimolar mixtures with primary normal alcohol (1-octanol) are presented. Reactions were carried out at atmospheric pressure in the presence of an iron catalyst in the temperature range of 568–673 K and load of 2.0 h−1. 2-Phenylethanol and 3-phenyl-1-propanol undergo dehydrogenation to aldehydes and condensation to esters. At higher temperatures symmetrical ketones containing ω-phenyl group as substituent are formed. Mixtures of these alcohols with 1-octanol give among others asymmetrical aromatic-aliphatic ketones.  相似文献   

17.
Modifications were made on commercial SPME fiber assembly and SPME–LC interface to improve the applicability of SPME for LC. Polyacrylonitrile (PAN)/C18 bonded fuse silica was used as the fiber coating for LC applications because the fiber coating was not swollen in common LC solvents at room temperature. The inner tubing of SPME fiber assembly was replaced with a 457 μm outside diameter (o.d.) solid nitinol rod. And the coated fiber (o.d. 290 μm) was installed onto the nitinol rod. The inner diameter (i.d.) of the through hole of the ferrule in the SPME–LC interface was enlarged to 508 μm to accommodate the nitinol rod. The much larger inner rod protected the fiber coating from being stripped when the fiber was withdrawn from the SPME–LC interface. The system was evaluated in term of pressure test, desorption optimization, peak shape, carryovers, linear range, precision, and limit of detection (LOD) with polycyclic aromatic hydrocarbons (PAHs) as the test analytes. The results demonstrated that the improved system was robust and reliable. It overcame the drawbacks, such as leak of solvents and damage of fiber coatings, associated with current SPME fibers and SPME–LC interface. Another sealing mechanism was proposed by sealing the nitinol rod with a specially designed poly(ether ether ketone) (PEEK) fitting. The device was fabricated and tested for manual use.  相似文献   

18.
In this study, the experimental extraction conditions on applying headspace solid‐phase microextraction and cold fiber headspace solid‐phase microextraction (CF‐HS‐SPME) procedures to samples of six medicinal herbs commonly found in southern Brazil were optimized. The optimized conditions for headspace solid‐phase microextraction were found to be an extraction temperature of 60°C and extraction time of 40 min. For CF‐HS‐SPME, the corresponding values were 60°C and 15 min. In the case of the coating temperature for the CF‐HS‐SPME system, two approaches were investigated: (i) Temperature of 5°C applied during the whole extraction procedure; and (ii) the use of two fiber temperatures in the same extraction procedure with the aim of extracting the volatile and semivolatile compounds, the ideal condition being 60°C for the first 7.5 min and 5°C for the final 7.5 min. The three extraction procedures were compared. The CF‐HS‐SPME procedure had good performance only for the more volatile compounds whereas the strategy using two coating temperatures in the same procedure showed good performance for all compounds studied. It was also possible to determine the profile for the volatile fraction of each herb studied applying this technique followed by GC‐MS.  相似文献   

19.

A highly porous fiber coating material was prepared and functionalized with 3-amino propyl triethoxysilane (APTES) on hexagonally ordered nanoporous silica (SBA-15). Applicability of this coating was assessed employing a laboratory made solid-phase microextraction (SPME) device and gas chromatography–mass spectrometry for the simultaneous sampling and determination of trace polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions. A one at the time optimization strategy was applied to investigate and optimize important extraction parameters such as extraction temperature, extraction time, ionic strength and sonication time. In the optimum conditions, the relative standard deviations for deionized water, spiked with selected PAHs were between 3.3 and 7.7% (n = 3), and detection limits for the studied compounds were 4.2 and 26.1 pg mL−1. No significant change was observed in the extraction efficiency of the new SPME fiber, over 50 extractions. The proposed method was successfully applied to the extraction and determination of PAHs in the waste water samples.

  相似文献   

20.
A polymeric ionic liquid (PIL) poly(1-vinyl-3-hexylimidazolium chloride) (poly(ViHIm+Cl)) was designed as a coating material for solid phase microextraction (SPME) to extract polar compounds including volatile fatty acids (VFAs) and alcohols. The extracted analytes were analyzed by using gas chromatography (GC) coupled with flame ionization detection (FID). Extraction parameters of the HS–SPME–GC–FID method, such as ionic strength, extraction temperature, pH and extraction time were optimized. Calibration studies were carried out under the optimized conditions to further evaluate the performance of the PIL-based SPME coating. For comparison purposes, the PIL poly(1-vinyl-3-hexylimidazolium bis[(trifluoromethyl)sulfonyl]imide) (poly(ViHIm+NTf2)) was also used as the SPME coating to extract the same analytes. The results showed that the poly(ViHIm+Cl) PIL coating had higher selectivity towards more polar analytes due to the presence of the Cl anion which provides higher hydrogen bond basicity than the NTf2 anion. The limits of detection (LODs) determined by the designed poly(ViHIm+Cl) PIL coating ranged from 0.02 μg L−1 for octanoic acid and decanoic acid and 7.5 μg L−1 for 2-nitrophenol, with precision values (as relative standard deviation) lower than 14%. The observed performance of the poly(ViHIm+Cl) PIL coating was comparable to previously reported work in which commercial or novel materials were used as SPME coatings. The selectivity of the developed PIL coatings was also evaluated using heptane as the matrix solvent. This work demonstrates that the selectivity of PIL-based SPME coatings can be simply tuned by incorporating different counteranions to the sorbent coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号