首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A click generated quinoline derivative (1) has been synthesized and used as a fluorescent probe for sequential recognition of Cu2+ and pyrophosphate (PPi) in DMSO/H2O (1:1, v/v, HEPES 20 mM, pH = 7.4) solution. Probe 1 displays high selectivity to Cu2+ ions, and the in-situ prepared probe 1-Cu2+ exhibits high selectivity toward pyrophosphate (PPi) with emission recovery of probe 1. Therefore, 1-Cu2+ complex can be applied as a fluorescence turn-on probe for PPi with high selectivity and sensitivity.  相似文献   

2.
Two 4,5-disubstituted-1,8-naphthalimide derivatives 1 and 2 were synthesized as ratiometric fluorescent and colorimetric sensors for Cu2+, respectively. In 100% aqueous solutions of 1, the presence of Cu2+ induces a strong and increasing fluorescent emission centered at 478 nm at the expense of the fluorescent emission of 1 centered at 534 nm. Compound 2 senses Cu2+ by means of a colorimetric (primrose yellow to pink) method with a thorough quench in emission attributed to the deprotonation of the secondary amine conjugated to the naphthalimide fluorophore. 1-Cu2+ and 2-Cu2+ sense cyanide in ratiometric way via colorimetric and fluorescent changes.  相似文献   

3.
Carbohydrate based fluorescent sensors S1 and S2 have been developed by fluorogenic dual click chemistry and are characterized by various spectroscopic techniques. Both the fluorescent probes displayed highly selective detection of Cu2+ ions by means of fluorescence quenching. The job plot experiment suggested 1:1 complexation of probes S1 and S2 with Cu2+ ions having detection limit of 6.99 μM and 7.30 μM, respectively. The binding constants for S1-Cu2+ and S2-Cu2+ complexation were evaluated to be 3.34 × 103 M−1 and 5.93 × 103 M−1, respectively.  相似文献   

4.
A new fluorescein-based chemodosimeter (II) for Hg2+ ion was designed and synthesized, and it displayed excellent selective and sensitive toward Hg2+ ion over other commonly metal ions in aqueous media. II was a colorless, non-fluorescent compound. Upon addition of Hg2+ to the solution of II, the thiosemicarbazide moiety of II would undergo an irreversible desulfurization reaction to form its corresponding oxadiazole (IV), a colorful and fluorescent product. During this process, the spirocyclic ring of II was opened, causing instantaneous development of visible color and strong fluorescence emission in the range of 500-600 nm. Based on the above mechanism, a fluorogenic Hg2+-selective chemodosimeter was developed. The fluorescence increase is linearly with Hg2+ concentration up to 1.0 μmol L−1 with a detection limit of 8.5 × 10−10 mol L−1 (3σ). Compared with the rhodamine-type chemodosimeter, II is more stable in aqueous media and exhibits higher sensitivity toward Hg2+. The findings suggest that II will serve as a practical chemodosimeter for rapid detection of Hg2+ concentrations in realistic media.  相似文献   

5.
A fluorescent probe 1 for Hg2+ based on a rhodamine-coumarin conjugate was designed and synthesized. Probe 1 exhibits high sensitivity and selectivity for sensing Hg2+, and about a 24-fold increase in fluorescence emission intensity is observed upon binding excess Hg2+ in 50% water/ethanol buffered at pH 7.24. The fluorescence response to Hg2+ is attributed to the 1:1 complex formation between probe 1 and Hg2+, which has been utilized as the basis for the selective detection of Hg2+. Besides, probe 1 was also found to show a reversible dual chromo- and fluorogenic response toward Hg2+ likely due to the chelation-induced ring opening of rhodamine spirolactam. The analytical performance characteristics of the proposed Hg2+-sensitive probe were investigated. The linear response range covers a concentration range of Hg2+ from 8.0 × 10−8 to 1.0 × 10−5 mol L−1 and the detection limit is 4.0 × 10−8 mol L−1. The determination of Hg2+ in both tap and river water samples displays satisfactory results.  相似文献   

6.
A new thiacalix[4]arene based fluorescent sensor bearing two dansyl groups has been synthesized in cone conformation. In CH3CN:CH2Cl2 (1:1), the presence of Cu (II) induces the formation of a 1:1 metal:ligand complex, which exhibits increasing emission at 433 nm at the expense of the fluorescent emission of 1 centered at 504 nm. The detection limit of the sensor for Cu2+ is 2×10−7 mol L−1. For anion sensing, 1 shows a high selectivity for fluoride ions over other anions tested.  相似文献   

7.
A novel fluorescent chemosensor 1 with two anthraceneisoxazolymethyl groups at the lower rim of calix[4]arene has been synthesized, which revealed a dual emission (monomer and excimer) when excited at 375 nm. This chemosensor displayed a selective fluorescence quenching only with Cu2+ ion over all other metal ions examined. When Cu2+ ion was bound to 1, the fluorescence intensities of both monomer and excimer were quenched. Furthermore, the association constant for the 1:1 complex of 1·Cu2+ was determined to be (1.58 ± 0.03) × 104 M−1.  相似文献   

8.
Zhaochao Xu  Jingnan Cui  Rong Zhang 《Tetrahedron》2006,62(43):10117-10122
The design, synthesis, and photophysical evaluation of a new naphthalimide-based fluorescent chemosensor, N-butyl-4-[di-(2-picolyl)amino]-5-(2-picolyl)amino-1,8-naphthalimide (1), were described for the detection of Zn2+ in aqueous acetonitrile solution at pH 7.0. Probe 1 showed absorption at 451 nm and a strong fluorescence emission at 537 nm (ΦF=0.33). The capture of Zn2+ by the receptor resulted in the deprotonation of the secondary amine conjugated to 1,8-naphthalimide so that the electron-donating ability of the N atom would be greatly enhanced; thus probe 1 showed a 56 nm red-shift in absorption (507 nm) and fluorescence spectra (593 nm, ΦF=0.14), respectively, from which one could sense Zn2+ ratiometrically and colorimetrically. The deprotonated complex, [(1-H)/Zn]+, was calculated at m/z 619.1800 and measured at m/z 618.9890. In contrast to these results, the emission of 1 was thoroughly quenched by Cu2+, Co2+, and Ni2+. The addition of other metal ions such as Li+, Na+, K+, Mg2+, Ca2+, Fe3+, Mn2+, Al3+, Cd2+, Hg2+, Ag+, and Pb2+ produced a nominal change in the optical properties of 1 due to their low affinity to probe 1. This means that probe 1 has a very high fluorescent imaging selectivity to Zn2+ among metal ions.  相似文献   

9.
New dioxocyclam derivatives bearing two anthracene fluorophores were prepared, and their fluoroionophoric properties toward transition metal ions were investigated. Chemosensor 2 having anthrylacetamide moieties exhibited pronounced Hg2+- and Cu2+-selective fluoroionophoric properties in aqueous acetonitrile solution over other representative transition metal ions, as well as alkali and alkaline earth metal ions. Chemosensor 2 also exhibited Hg2+ and Cu2+ selectivity under competitive conditions in the presence of physiologically and environmentally important metal ions. The detection limits for the sensing of Hg2+ and Cu2+ ions were 7.8 × 10−6 and 1.5 × 10−6 M, respectively, in aqueous 95% acetonitrile solution.  相似文献   

10.
The synthesis and electrochemical properties of new cobalt and manganese phthalocyanine complexes, tetra-substituted with 3,4-(methylendioxy)-phenoxy at the peripheral (complexes 3 and 5) and non-peripheral (complexes 4 and 6) positions, are reported. Complexes 3 and 4 showed Q-band absorption, in DMF, at 668 and 686 nm, respectively while Q-band due to complexes 5 and 6 appeared at 732 and 760 nm, respectively in CHCl3. All the complexes showed well resolved redox processes attributed to both metal and ring based processes. Complexes 3 and 4 showed four redox processes, labeled I, II, III and IV. For complex 3, process I (CoIPc−2/CoIPc−3) was observed at −1.45 V, II (CoIIPc−2/CoIPc−2) at −0.38 V, III (CoIIIPc−2/CoIIPc−2) at +0.49 V and IV (CoIIIPc−1/CoIIIPc−2) at +0.97 V versus Ag|AgCl. Similar processes were observed for complex 4 at −1.36 V, −0.27 V, +0.56 V, +1.03 V versus Ag|AgCl, respectively. Complexes 5 and 6 showed two redox processes (I and II). For complex 5, these processes appeared at −0.79 V (MnIIPc−2/MnIIPc−3, I) and −0.07 V versus Ag|AgCl (MnIIIPc−2/MnIIPc−2, II), while for complex 6, they were observed at −0.86 V and −0.04 V versus Ag|AgCl. Spectroelectrochemistry was used to probe and confirm the origin of these processes.  相似文献   

11.
Yu C  Chen L  Zhang J  Li J  Liu P  Wang W  Yan B 《Talanta》2011,85(3):1627-1633
A novel Cu2+-specific “off-on” fluorescent chemosensor of naphthalimide modified rhodamine B (naphthalimide modified rhodamine B chemosensor, NRC) was designed and synthesized, based on the equilibrium between the spirolactam (non-fluorescence) and the ring-opened amide (fluorescence). The chemosensor NRC showed high Cu2+-selective fluorescence enhancement over commonly coexistent metal ions or anions in neutral aqueous media. The limit of detection (LOD) based on 3 × δblank/k was obtained as low as 0.18 μM of Cu2+, as well as an excellent linearity of 0.05-4.5 μM (R = 0.999), indicating the chemosensor of high sensitivity and wide quantitation range. And also the coordination mode with 1:1 stoichiometry was proposed between NRC and Cu2+. In addition, the effects of pH, co-existing metal ions and anions, and the reversibility were investigated in detail. It was also demonstrated that the NRC could be used as an excellent “off-on” fluorescent chemosensor for the measurement of Cu2+ in living cells with satisfying results, which further displayed its valuable applications in biological systems.  相似文献   

12.
13.
A pyrene-functional fluoroionophore, 1 was used to construct a supramolecular 1/γ-CD complex for Cu2+ recognition in water. In aqueous γ-CD solution, 1 exhibits pyrene monomer fluorescence emission at 378 nm and 397 nm, while in the presence of Cu2+, it shows a pyrene excimer emission at 452 nm with a decrease in the monomer fluorescence due to the formation of a 1:2 metal-liganded complex. Based on the response characteristics of the supramolecular complex, a fluorescent ratiometric method was performed for the determination of Cu2+ concentration in water. With the optimum conditions described, Cu2+ in aqueous solution can be determined from 1.2 × 10−6 to 4.5 × 10−4 M. The Cu2+ selectivity of the complex is excellent, and the excimer fluorescence enhancements are very smaller induced by other heavy metal and transition metal ions.  相似文献   

14.
A rigid conjugated pyridinylthiazole derivative (1) and two bithiazole derivatives with similar structures (2, 3) were synthesized and characterized. Their optical properties were investigated through spectral analysis. By applying the three compounds to Cu2+ ions detection, it was shown that compound 1 could be employed as a selective and sensitive Cu2+ ions fluorescent chemosensor. For aqueous assay, the nanoparticles of compound 1 were prepared in aqueous media. Compared to the monomer, 1 nanoparticles were more fluorescence sensitive to Cu2+ ions. Its binding mode with Cu2+ ions was correlated well with Langmuir equation. Compound 1 nanoparticles exhibit a dynamic working range for Cu2+ ions from 0.02 to 0.50 μM with a detection limit of 10 nM. The proposed chemosensor has been used for the direct measurement of Cu2+ content in drinking water samples with satisfying results.  相似文献   

15.
A chemosensor based upon the sugar-aza-crown ether 7 with one anthracenetriazolymethyl moiety was prepared and its fluoroionophoric properties toward transition metal ions were investigated. Chemosensor 7 exhibits highly selective recognition toward Cu2+ ion among a series of tested metal ions in MeOH solution. The association constant for 7∗Cu2+ in MeOH solution was calculated to be 2.5 × 104 M−1.  相似文献   

16.
The compound 2-[1,4,7,10-tetraazacyclododecan-1-yl]-ethanethiol (L2) has been synthesized and characterized by multinuclear NMR spectroscopy and mass spectrometry. Its thiol-protected precursor L1 has also been isolated and characterized, including by X-ray structural analysis. The protonation constants of L2 were determined by potentiometric methods at 25.0 °C and 0.10 mol dm−3 KNO3 ionic strength. 13C NMR studies and 2D NMR spectra recorded at different pD values have been used to analyse its protonation scheme. Stability constants of L2 with Cu2+, Zn2+ and Cd2+ were also determined by potentiometry, and the Zn(II) and Cu(II) complexes were studied in solution by NMR, UV–Vis, and EPR spectroscopies. The pM values (pH 7.4) calculated for the metal complexes of L2 are higher than the corresponding values found for cyclen and cyclam, but the selectivity of L2 for Cu2+ is low.  相似文献   

17.
A new ratiometric and exclusively selective fluorescent probe N-butyl-4,5-di[N-(phenyl)-2-(amino)-acetamino]-1,8-naphthalimide (1) was designed and synthesized on the basis of the mechanism of internal charge transfer (ICT). The probe 1 showed exclusively selectivity for CuII in the presence of a variety of other metal ions in aqueous ethanol solutions and the binding mode of probe 1 with CuII was 1:1 metal-ligand complex. Fluorescent emission spectra of probe 1 in the presence of CuII showed a 50 nm blue shift, which is from 521 nm to 471 nm. Furthermore, probe 1 shows the same fluorescent change with the CuII in living cells.  相似文献   

18.
Four azide bridged dinuclear copper(II) complexes, [Cu2(LX)2(N3)2](ClO4)2, with LX = substituted N,N-bis[(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine, [X = H (1), OMe (2), Me (3) and Cl (4)] have been synthesized, out of which complexes 1 and 2 have been characterized structurally. In Complex 1 the two bridging azide ligands have connected the two metal centers in an end-on (EO) fashion with aSP (asymmetric Square Pyramidal) geometry and showed an weak antiferromagnetic interaction (J = −3.34 cm−1). On the contrary, in complex 2, the two metal centers have been connected in end-to-end (EE) fashion exhibiting moderately strong ferromagnetic interaction (J = +19.7 cm−1). Cyclic voltammetric studies performed on all the four complexes show a reasonably good correlations when E1/2 for CuIICuII → CuIICuIII and CuIICuIII → CuIIICuIII oxidations are plotted against σ (substituent constants) with ρ = −0.182 (R= 0.92) and −0.684 (R= 0.99) respectively.  相似文献   

19.
A fluorescent based receptor (4Z)-4-(4-diethylamino)-2-hydroxybenzylidene amino)-1,2dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (receptor 3) was developed for the highly selective and sensitive detection of Cu2+ and Zn2+ in semi-aqueous system. The fluorescence of receptor 3 was enhanced and quenched, respectively, with the addition of Zn2+ and Cu2+ ions over other surveyed cations. The receptor formed host-guest complexes in 1:1 stoichiometry with the detection limit of 5 nM and 15 nM for Cu2+ and Zn2+ ions, respectively. Further, we have effectively utilized the two metal ions (Cu2+ and Zn2+) as chemical inputs for the manufacture of INHIBIT type logic gate at molecular level using the fluorescence responses of receptor 3 at 450 nm.  相似文献   

20.
In this Letter we present a new probe, (E)-7-(diethylamino)-2-oxo-2H-chromene-3-carbaldehyde oxime (JB), which can detect Cu2+ ions in HEPES buffer under physiological conditions. Benesi–Hildebrand and Job plots demonstrate that the stoichiometry of the Cu2+ complex formed is 2:1. Possible interference with other analytes was examined, and the decrease of the fluorescence of JB at 510 nm when it reacts with Cu2+ was shown to be highly selective. This probe accumulates in the plasmalemma of human neuroblastoma SH-SY5Y cells. Molecular dynamics (MD) simulations revealed that JB interacts with the lipid bilayer at the level of the glycerol moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号