首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
 Although the validation process necessary to ensure that an analytical method is fit for purpose is universal, the emphasis placed on different aspects of that process will vary according to the end use for which the analytical procedure is designed. It therefore becomes difficult to produce a standard method validation protocol which will be totally applicable to all analytical methods. It is probable that far more than 30% of the methods in routine laboratory use have not been validated to an appropriate level to suit the problem at hand. This situation needs to change and a practical assessment of the degree to which a method requires to be validated is the first step to a reliable and cost effective analytical industry. Received: 22 September 1997 · Accepted: 28 November 1997  相似文献   

3.
Validation of analytical methods is required prior to their routine use. In addition, the current implementation of the Quality by Design (QbD) framework in the pharmaceutical industries aims at improving the quality of the end products starting from its early design stage. However, no regulatory guideline or none of the published methodologies to assess method validation propose decision methodologies that effectively take into account the final purpose of developed analytical methods. In this work a solution is proposed for the specific case of validating analytical methods involved in the assessment of the content uniformity or uniformity of dosage units of a batch of pharmaceutical drug products as proposed in the European or US pharmacopoeias. This methodology uses statistical tolerance intervals as decision tools. Moreover it adequately defines the Analytical Target Profile of analytical methods in order to obtain analytical methods that allow to make correct decisions about Content uniformity or uniformity of dosage units with high probability. The applicability of the proposed methodology is further illustrated using an HPLC-UV assay as well as a near infra-red spectrophotometric method.  相似文献   

4.
The context of validation for mass spectrometry (MS)-based methods is critically analysed. The focus is on the fitness for purpose depending on the task of the method. Information is given on commonly accepted procedures for the implementation and acceptance of analytical methods as ‘confirmatory methods’ according to EU criteria, and strategies for measurement. Attention is paid to the problem of matrix effects in the case of liquid chromatography-mass spectrometry-based procedures, since according to recent guidelines for bioanalytical method validations, there is a need to evaluate matrix effects during development and validation of LC-MS methods “to ensure that precision, selectivity and sensitivity will not be compromised”. Beneficial aspects of the qualification process to ensure the suitability of the MS analytical system are also evaluated and discussed.  相似文献   

5.
All analysts face the same situations as method validation is the process of proving that an analytical method is acceptable for its intended purpose. In order to resolve this problem, the analyst refers to regulatory or guidance documents, and therefore the validity of the analytical methods is dependent on the guidance, terminology and methodology, proposed in these documents. It is therefore of prime importance to have clear definitions of the different validation criteria used to assess this validity. It is also necessary to have methodologies in accordance with these definitions and consequently to use statistical methods which are relevant with these definitions, the objective of the validation and the objective of the analytical method. The main purpose of this paper is to outline the inconsistencies between some definitions of the criteria and the experimental procedures proposed to evaluate those criteria in recent documents dedicated to the validation of analytical methods in the pharmaceutical field, together with the risks and problems when trying to cope with contradictory, and sometimes scientifically irrelevant, requirements and definitions.  相似文献   

6.
Quality of botanical products is a great uncertainty that consumers, clinicians, regulators, and researchers face. Definitions of quality abound, and include specifications for sanitation, adventitious agents (pesticides, metals, weeds), and content of natural chemicals. Because dietary supplements (DS) are often complex mixtures, they pose analytical challenges and method validation may be difficult. In response to product quality concerns and the need for validated and publicly available methods for DS analysis, the US Congress directed the Office of Dietary Supplements (ODS) at the National Institutes of Health (NIH) to accelerate an ongoing methods validation process, and the Dietary Supplements Methods and Reference Materials Program was created. The program was constructed from stakeholder input and incorporates several federal procurement and granting mechanisms in a coordinated and interlocking framework. The framework facilitates validation of analytical methods, analytical standards, and reference materials.  相似文献   

7.
According to the chemical legislation in force in most of the industrialized nations to protect man and the environment from the harmful effects of hazardous substances and preparations, a product must be subjected to a large number of mandatory tests before it may be marketed, to demonstrate that it shows no adverse effects on man or the environment when properly handled. To ensure that the results of tests are comparable and above all verifiable, the OECD has drawn up a set of guidelines for Good Laboratory Practice, GLP, on the request of the FDA and EPA authorities in the USA. The application of these guidelines is now mandatory for all the tests specified by the chemical legislation, also for analytical methods. These methods not only apply to the stipulated determination of physical and chemical parameters they also apply to toxicological and ecotoxicological tests. Comprehensive documentation of all stages of these tests from preparatory work to reporting is designed to make the results verifiable. Agreement with the principles of GLP means that the procedures used in a test have been documented in such a manner as to be verifiable. However, does compliance with GLP necessarily guarantee accurate analytical values and thus correct test results? Is GLP necessarily also Good Analytical Practice, GAP? In the following the authors try to provide the answer.  相似文献   

8.
9.
In both European legislation relating to the testing of food and the recommendations of the Codex Alimentarius Commission, there is a movement away from specifying particular analytical methods towards specifying performance criteria to which any methods used must adhere. This ‘criteria approach’ has hitherto been based on the features traditionally used to describe analytical performance. This paper proposes replacing the traditional features, namely accuracy, applicability, detection limit and limit of determination, linearity, precision, recovery, selectivity and sensitivity, with a single specification, the uncertainty function, which tells us how the uncertainty varies with concentration. The uncertainty function can be used in two ways, either as a ‘fitness function’, which describes the uncertainty that is fit for purpose, or as a ‘characteristic function’ that describes the performance of a defined method applied to a defined range of test materials. Analytical chemists reporting the outcome of method validations are encouraged to do so in future in terms of the uncertainty function. When no uncertainty function is available, existing traditional information can be used to define one that is suitable for ‘off-the-shelf’ method selection. Some illustrative examples of the use of these functions in methods selection are appended.  相似文献   

10.
Analytical chemists can advantageously use an uncertainty function to describe the performance of an analytical system in terms of the standard uncertainty or standard deviation as a function of the concentration of the analyte. This “characteristic function” is useful for estimating uncertainty at a new concentration. A similar function can be used to prescribe the uncertainty that is regarded as fit for purpose for a particular application. This “fitness function” is useful in setting standards of accuracy in proficiency tests and similar exercises without revealing the concentration of the analyte. In combination, these two functions provide a rational basis for method selection.  相似文献   

11.
The topic of validation is diversified. This review outlines the validation strategies which can be found in national, international and supranational regulations, compares them with one another and aims to elaborate on the main principles. European regulations and legislation, Codex alimentarius guidelines, the official methods program of the AOAC, and naturally the relevant ISO standards, particularly the ISO 5725 series, are taken into consideration. The objective of every validation is to demonstrate fitness for purpose. This varies of course in its characteristics for the diverse uses. However, all approaches have in common the objective of harmonisation of food control by using effective and reliable methods. To this end, criteria are determined and validation models developed and made compulsory. ISO 5725 is the central basis for validations for quantitative methods with its validation specifications through method collaborative studies. On the contrary, there are no valid uniform international method specifications for qualitative methods. Collaborative studies are in opposition to single-lab-validations with different sources of error. Whereas laboratory errors are predominant in collaborative studies, the single-lab-validation or in-house validation concentrates particularly on time and processing errors (intermediate precision). In new statistical models for in-house validations, the matrix mismatch error is also considered. The validation models presented here are of a general nature and can be used in principle for all analytical methods. Correct and appropriate statistical modelling is very important.  相似文献   

12.
 The approach to analytical quality control adopted for the UK National Marine Analytical Quality Control Scheme is described. The Scheme began in 1991 and is in its fifth year of operation. The aim of the programme of work is to ensure adequate control over the accuracy of analysis, such that the aims of the UK National Marine Monitoring Plan are satisfied. The results of interlaboratory tests for the determination of nutrients in water samples and metals, organic compounds in waters, sediments and biological samples are summarised. Received: 7 October 1996 Accepted: 27 February 1997  相似文献   

13.
The enforcement of legal limits for food safety raises the question of decision-making in the context of uncertain measurements. It also puts the question of demonstrating that measurement technique that is used is fit for the purpose of controlling legal limits. A recent European Commision (EC) decision gives some indications how to deal with this question. In the meantime, the implementation of quality systems in analytical laboratories is now a reality. While these requirements deeply modified the organization of the laboratories, it has also improved the quality of the results. The goal of this communication is to describe how two fundamental requirements of ISO 17025 standard, i.e. validation of the methods and estimation of the uncertainty of measurements, can give a way to check whether an analytical method is correctly fit for the purpose of controlling legal limits. Both these requirements are not independent and it will be shown how they can be combined. A recent approach based on the “accuracy profile” of a method was applied to the determination of acrylamide and illustrates how uncertainty can be simply derived from the data collected for validating the method. Moreover, by basing on the β-expectation tolerance interval introduced by Mee [Technometrics (1984) 26(3): 251–253], it is possible to unambiguously demonstrate the fitness for purpose of a method. Remembering that the expression of uncertainty of the measurement is also a requirement for accredited laboratories, it is shown that the uncertainty can be easily related to the trueness and precision issuing from the data collected to build the method accuracy profile. The example presented here consists in validating a method for the determination of acrylamide in pig plasma by liquid chromatography–mass spectromery (LC–MS). Concentrations are expressed as mg/l and instrumental response is peak surface. The calibration experimental design included 5×5×2 measurements and namely consisted in preparing duplicate standard solutions at five concentration levels ranging from 10 to about 5000 mg/l. This was repeated for 5 days. The validation experimental design was similar.  相似文献   

14.
Summary The automation of chromatographic systems is of increasing interest to industry and research laboratories in routine applications. Besides potentially saving time or making better use of available instrumentation, automation also improves the quality of results by producing more precise and more reproducible HPLC data. The need for the validation of methods and qualification of instruments is increasingly recognised in order to ensure compliance with legal requirements (e.g. in the pharmaceutical industry) and to ensure the reliability of analytical results. Possibilities and requirements for automated HPLC systems are elaborated. Emphasis is placed on defining the goals of validation and on discussing different aspects of the validation of LC methods, system suitability tests, ruggedness of methods and the transfer of LC methods from laboratory to laboratory. Adequate strategies of HPLC method development provide very useful information on the validation and ruggedness of LC methods.  相似文献   

15.
Aflatoxin analysis at the beginning of the twenty-first century   总被引:4,自引:0,他引:4  
Aflatoxin mycotoxins were first described in the early 1960s as important fungal toxins, which contaminate many different human foods and animal feeds. Accurate and sensitive determination of these carcinogenic compounds immediately became an important requirement to meet food safety concerns and new official legislated regulations. For these reasons, analytical methods for aflatoxins continued to develop over the decades, reflecting advances in analytical chemistry. Currently, a wide range of methods are available to analytical scientists, ranging from newly described multi-toxin liquid chromatography tandem mass spectrometry to rapid methods based on immunological principles. These latter methods can provide quantitative outputs or a simple rapid determination of contamination level above or below a pre-determined cutoff value. The newest official methods as validated by Association of Official Analytical Chemists International or Comité Européen de Normalisation rely on immunoaffinity column clean-up of conventional extracts, followed by high-performance liquid chromatography separation of the analogues with detection based on natural fluorescence or the fluorescence generated by various derivatisation methods. In selecting from this range of available methods, the analytical chemist must decide on the requirements of the analysis such that the method chosen is ‘fit for purpose’.  相似文献   

16.
Analytical methods capability evaluation can be a useful methodology to assess the fitness of purpose of these methods for their future routine application. However, care on how to compute the capability indices have to be made. Indeed, the commonly used formulas to compute capability indices such as Cpk, will highly overestimate the true capability of the methods. Especially during methods validation or transfer, there are only few experiments performed and, using in these situations the commonly applied capability indices to declare a method as valid or as transferable to a receiving laboratory will conduct to inadequate decisions.  相似文献   

17.
The specific and accurate reversed-phase HPLC-UV method has been validated to determine levofloxacin hemihydrate (LEVH) level. The separation was conducted at C 18 analytical column by administering mobile phase acetonitrile, methanol, and phosphate buffer (pH 3) with the ratio of 17:3:80. The flow rate of the mobile phase was 1 mL/min with a UV detector at 295 nm wavelength. Analytical methods validation evaluated includes specificity, linearity, accuracy, precision, LOD, LOQ, and robustness. The implementation of the analytical method was employed to determine LEVH level in ocular polymeric nanoparticles preparations. The test was specific for LEVH with the retention time of 7.66 min. Linearity was obtained from the concentration range of 4.8 µg/mL to 29.04 µg/mL. All method validation criteria are within the acceptable range. The developed method can be applied for LEVH polymeric nano-formulation analysis.  相似文献   

18.
The validation procedure based on ISO 17025 standard has been used to study and illustrate both the longterm stability of the calibration process of the DC-ARC solid sample spectrometric method and the main validation criteria of the method. In the calculation of the validation characteristics depending on the linearity(calibration), also the fulfilment of predetermining criteria such as normality and homoscedasticity was checked. In order to decide whether there are any trends in the time-variation of the analytical signal or not, also the Neumann test of trend was applied and evaluated. Finally, a comparison with similar validation data of the ETV-ICP-OES method was carried out.  相似文献   

19.
Method validation is important in analytical chemistry to obtain the reliability of an analytical method. Guidelines provided by the regulatory bodies can be used as a general framework to assess the validity of a method. Since these guidelines do not focus on the reliability of analytical results exclusively, this study was aimed to combine a few recently evolved strategies that may render analytical method validation more reliable and trustworthy. In this research, the analytical error function was determined by appropriate polynomial regression statistics that determine the range of analyte concentration that may lead to more accurate measurements by producing the least possible total error in the assay and can be regarded as a reliable weighting method. The reliability of the analytical results over a particular concentration range has been proposed by a Bayesian probability study. In order to ensure the applicability of this approach, it was applied for the validation of an HPLC–UV assay method dedicated to the quantification of cefepime and tazobactam in human plasma. A comparison between the newer approach and the usual method validation revealed that the application of analytical error function and Bayesian analysis at the end of the validation process can produce significant improvements in the analytical results.  相似文献   

20.
The methods an analytical laboratory uses must be validated to be fit for purpose. The fitness for purpose of a quantitative method used to determine the concentration of a substance when assessing compliance to requirements can be described by the maximum measurement uncertainty. This is called the target measurement uncertainty. Acceptance criteria for precision and bias in the method validation are then established in terms of the target measurement uncertainty. The target measurement uncertainty can be decided by following a process which involves determining the required concentration range of the measurand; determining the acceptable level of risks of incorrect decisions of compliance; developing a suitable decision rule, with guard bands if appropriate; using the probability of making an incorrect decision of compliance based on the decision rule; and assessing the impact of bias. A key participant in this process is the end user of the data, the laboratory customer. This paper presents the concepts concerning target measurement uncertainty introduced in recently published international guidelines to the practicing analytical chemist who is not generally familiar with these concepts. Three examples are used to illustrate the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号