首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of tryptophan-functionalized graphene nanocomposite (Trp-GR) was synthesized by utilizing a facile ultrasonic method via ππ conjugate action between graphene (GR) and tryptophan (Trp) molecule. The material as prepared had well dispersivity in water and better conductivity than pure GR. The surface morphology of Trp-GR was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The electrochemical behaviors of ascorbic acid (AA), dopamine (DA), and uric acid (UA) were investigated by cyclic voltammetry (CV) on the surface of Trp-GR. The separation of the oxidation peak potentials for AA–DA, DA–UA and UA–AA was about 182 mV, 125 mV and 307 mV, which allowed simultaneously determining AA, DA, and UA. Differential pulse voltammetery (DPV) was used for the determination of AA, DA, and UA in their mixture. Under optimum conditions, the linear response ranges for the determination of AA, DA, and UA were 0.2–12.9 mM, 0.5–110 μM, and 10–1000 μM, with the detection limits (S/N = 3) of 10.09 μM, 0.29 μM and 1.24 μM, respectively. Furthermore, the modified electrode was investigated for real sample analysis.  相似文献   

2.
A sensitive and selective electrochemical method for the determination of dopamine using an Evans Blue polymer film modified on glassy carbon electrode was developed. The Evans blue polymer film modified electrode shows excellent electrocatalytic activity toward the oxidation of dopamine in phosphate buffer solution (pH 4.5). The linear range of 1.0 x 10(-6)-3.0 x 10(-5) M and detection limit of 2.5 x 10(-7) M were observed in pH 4.5 phosphate buffer solutions. The interference studies showed that the modified electrode exhibits excellent selectivity in the presence of large excess of ascorbic acid and uric acid. The separation of the oxidation peak potentials for dopamine-ascorbic acid and dopamine-uric acid were about 182 mV and 180 mV, respectively. The differences are large enough to determine AA, DA and UA individually and simultaneously. This work provides a simple and easy approach to selectively detect dopamine in the presence of ascorbic acid and uric acid in physiological samples.  相似文献   

3.
Palraj Kalimuthu 《Talanta》2010,80(5):1686-319
This paper describes the simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and xanthine (XN) using an ultrathin electropolymerized film of 2-amino-1,3,4-thiadiazole (p-ATD) modified glassy carbon (GC) electrode in 0.20 M phosphate buffer solution (pH 5.0). Bare GC electrode failed to resolve the voltammetric signals of AA, DA, UA and XN in a mixture. On the other hand, the p-ATD modified electrode separated the voltammetric signals of AA, DA, UA and XN with potential differences of 110, 152 and 392 mV between AA-DA, DA-UA and UA-XN, respectively and also enhanced their oxidation peak currents. The modified electrode could sense 5 μM DA and 10 μM each UA and XN even in the presence of 200 μM AA. The oxidation currents were increased from 30 to 300 μM for AA, 5 to 50 μM for DA and 10 to 100 μM for each UA and XN, and the lowest detection limit was found to be 2.01, 0.33, 0.19 and 0.59 μM for AA, DA, UA and XN, respectively (S/N = 3). The practical application of the present modified electrode was demonstrated by the determination of AA, UA and XN in human urine samples.  相似文献   

4.
The present study reports the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in 0.20 M phosphate buffer solution (pH 5.0) using electropolymerized ultrathin film of 5-amino-2-mercapto-1,3,4-thiadiazole (AMT) on glassy carbon (GC) electrode. The bare GC electrode does not separate the voltammetric signals of AA, DA and UA. However, electropolymerized AMT (p-AMT) modified GC electrode not only resolved the voltammetric signals of AA, DA and UA but also dramatically enhanced their oxidation peak currents when compared to bare GC electrode. The enhanced oxidation currents for AA, DA and UA at p-AMT modified electrode are due to the electrostatic interactions between them and the polymer film. Using amperometric method, we achieved the lowest detection of 75 nM AA, 40 nM DA and 60 nM UA at p-AMT modified electrode. The amperometric current was linearly increased from 200 nM to 0.80 mM for each AA, DA and UA and the lowest detection limit was found to be 0.92, 0.07 and 0.57 nM, respectively (S/N = 3). The practical application of the modified electrode was demonstrated by the determination of DA in dopamine hydrochloride injection.  相似文献   

5.
Po Wang  Xue Huang 《Talanta》2007,73(3):431-437
A novel electrochemical sensor has been constructed by use of a glassy carbon electrode (GCE) coated with a gold nanoparticle/choline (GNP/Ch). Electrochemical impedance spectroscopy (EIS), field emission scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the properties of this modified electrode. It was demonstrated that choline was covalently bounded on the surface of glassy carbon electrode, and deposited gold nanoparticles with average size of about 100 nm uniformly distributed on the surface of Ch. Moreover, the modified electrode exhibits strong electrochemical catalytic activity toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with obviously reduction of overpotentials. For the ternary mixture containing DA, AA and UA, these three compounds can be well separated from each other, allowing simultaneously determination of DA and UA under coexistence of AA. The proposed method can be applied to detect DA and UA in real samples with satisfactory results.  相似文献   

6.
Nanocrystalline graphite-like pyrolytic carbon film (PCF) electrode fabricated by a non-catalytic chemical vapor deposition (CVD) process was used for the simultaneous electrochemical sensing of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrode was studied with respect to changes in electrocatalytic activity caused by a simple and fast electrochemical pretreatment. The anodized electrode exhibited excellent performance compared to many chemically modified electrodes in terms of detection limit, linear dynamic range, and sensitivity. Differential pulse voltammetry (DPV) was used for the simultaneous determination of ternary mixtures of DA, AA, and UA. Under optimum conditions, the detection limits were 2.9 μM for AA, 0.04 μM for DA, and 0.03 μM for UA with sensitivities of 0.078, 5.345, and 6.192 A M−1, respectively. The peak separation was 219 mV between AA and DA and 150 mV between DA and UA. No electrode fouling was observed and good reproducibility was obtained in all the experiments. The sensor was successfully applied for the assay of DA in an injectable drug and UA in human urine by using standard addition method.  相似文献   

7.
A novel electrochemical sensor was fabricated by electrodeposition of gold nanoparticles on a poly(L-methionine) (PMT)-modified glassy carbon electrode (GCE) to form a nano-Au/PMT composite-modified GCE (nano-Au/PMT/GCE). Scanning electron microscopy and electrochemical techniques were used to characterize the composite electrode. The modified electrode exhibited considerable electrocatalytic activity towards the oxidation of dopamine (DA) and uric acid (UA) in phosphate buffer solution (pH = 7.00). Differential pulse voltammetry revealed that the electrocatalytic oxidation currents of DA and UA were linearly related to concentration over the range of 5.0×10-8 to 10-6 mol/L for DA and 7.0×10-8 to 10-6 mol/L for UA. The detection limits were 3.7×10-8 mol/L for DA and 4.5×10-8 mol/L for UA at a signal-to-noise ratio of 3. According to our experimental results, nano-Au/PMT/GCE can be used as a sensitive and selective sensor for simultaneous determination of DA and UA.  相似文献   

8.
Detection of dopamine (DA) in the presence of excess of ascorbic acid (AA) has been demonstrated using a conducting polymer matrix, poly (3,4-ethylenedioxythiophene) (PEDOT) film in neutral buffer (PBS 7.4) solution. The PEDOT film was deposited on a glassy carbon electrode by electropolymerization of EDOT from acetonitrile solution. Atomic force microscopy studies revealed that the electrodeposited film was found to be approximately 100 nm thick with a roughness factor of 2.6 nm. Voltammetric studies have shown catalytic oxidation of DA and AA on PEDOT modified electrode and can afford a peak potential separation of ∼0.2 V. It is speculated that the cationic PEDOT film interacts with the negatively charged ascorbate anion through favorable electrostatic interaction, which results in pre-concentration at a less anodic value. The positively charged DA tends to interact with the hydrophobic regions of PEDOT film through hydrophobic–hydrophobic interaction thus resulting in favorable adsorption on the polymer matrix. Further enhancement in sensitivity to micro molar level oxidation current for DA/AA oxidation was achieved by square wave voltammetry (SWV) which can detect DA at its low concentration of 1 μM in the presence of 1000 times higher concentration of AA (1 mM). Thus the PEDOT modified electrode exhibited a stable and sensitive response to DA in the presence of AA interference.  相似文献   

9.
In the present work, a tube-like structure of graphene hybrid as modifier to fabricate electrode for simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp) was reported. The hybrid was synthesized by a simple method based on graphene sheets (GS) and 3,4,9,10-perylenetetracarboxylic acid (PTCA) via π–π stacking interaction under ultrasonic condition. The combination of GS and PTCA could effectively improve the dispersion of GS, owing to PTCA with the carboxylic-functionalized interface. Comparing with pure GS or PTCA modified electrode, GS–PTCA displayed high catalytic activity and selectivity toward the oxidation of AA, DA, UA, and Trp. Moreover, cyclic voltammetry, different pulse voltammetry and scanning electron microscopy were employed to characterize the sensors. The experiment results showed that the linear response range for simultaneous detection of AA, DA, UA, and Trp were 20–420 μM, 0.40–374 μM, 4–544 μM and 0.40–138 μM, respectively, and the detection limits were 5.60 μM, 0.13 μM, 0.92 μM and 0.06 μM (S/N = 3). Importantly, the proposed method offers promise for simple, rapid, selective and cost-effective analysis of small biomolecules.  相似文献   

10.
《Comptes Rendus Chimie》2015,18(4):438-448
A highly sensitive method was investigated for the simultaneous determination of acetaminophen (AC), dopamine (DA), and ascorbic acid (AA) using a PbS nanoparticles Schiff base-modified carbon paste electrode (PSNSB/CPE). Differential pulse voltammetry peak currents of AC, DA and AA increased linearly with their concentrations within the ranges of 3.30 × 10−8–1.58 × 10−4 M, 5.0 × 10−8–1.2 × 10−4 M and 2.50 × 10−6–1.05 × 10−3 M, respectively, and the detection limits for AC, DA and AA were 5.36 × 10−9, 2.45 × 10−9 and 1.86 × 10−8 M, respectively. The peak potentials recorded in a phosphate buffer solution (PBS) of pH 4.6 were 0.672, 0.390, and 0.168 V (vs Ag/AgCl) for AC, DA and AA, respectively. The modified electrode was used for the determination of AC, DA, and AA simultaneously in real and synthetic samples.  相似文献   

11.
A nano-composite of DNA/poly(p-aminobenzensulfonic acid) bi-layer modified glassy carbon electrode as a biosensor was fabricated by electro-deposition method. The DNA layer was electrochemically deposited on the top of electropolymerized layer of poly(p-aminobenzensulfonic acid) (Pp-ABSA). Scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemical impedance spectrum were used for characterization. It demonstrated that the deposited Pp-ABSA formed a 2-D fractal patterned nano-structure on the electrode surface, and which was further covered by a uniform thin DNA layer. Cyclic voltammetry and electrochemical impedance spectrum were used to characterize the deposition, and demonstrated the conductivity of the Pp-ABSA layer. The biosensor was applied to the detection of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). In comparison with DNA and Pp-ABSA single layer modified electrodes, the composite bi-layer modification provided superior electrocatalytic actively towards the oxidation of DA, UA and AA, and separated the originally overlapped differential pulse voltammetric signals of UA, DA and AA oxidation at the bare electrode into three well-defined peaks at pH 7 solution. The peak separation between AA and DA, AA and UA was 176 mV and 312 mV, respectively. In the presence of 1.0 mM AA, the anodic peak current was a linear function of the concentration of DA in the range 0.19-13 microM. The detection limit was 88 nM DA (s/n=3). The anodic peak current of UA was also a linear function of concentration in the range 0.4-23 microM with a detection limit of 0.19 microM in the presence of 0.5 mM AA. The superior sensing ability was attributed to the composite nano-structure. An interaction mechanism was proposed.  相似文献   

12.
A new chemically modified electrode is constructed based on iron(III) doped zeolite modified carbon paste electrode (Fe(3+)Y/ZCME). The electrode was evaluated as a sensor for sub-micromolar determination of tryptophan (Trp), uric acid (UA) and ascorbic acid (AA) in aqueous solutions. The measurements were carried out by application of the differential pulse voltammetry (DPV) method in phosphate buffer solution with pH 3.5. Iron(III) loaded in zeolite can increase anodic peak currents by adsorption of Trp, UA and AA on electrode surface The analytical performance was evaluated with respect to the carbon paste composition, pH of solution, accumulation time and accumulation potential. The prepared electrode shows voltammetric responses with high sensitivity and selectivity for Trp, UA and AA in optimal conditions, which makes it very suitable for simultaneous determination of these compounds. The linear calibration range for AA in the presence of 50muM UA and 50muM Trp was 0.6muM to 100muM, with a correlation coefficient of 0.9992, and a detection limit of 0.21muM (S/N=3). A linear relationship was found for UA in the range of 0.3-700muM containing 10muM AA and 50muM Trp, with a correlation coefficient of 0.9990 and a detection limit of 0.08muM. The linear calibration range for Trp in the presence of 10muM AA and 50muM UA was 0.2-150muM, with a correlation coefficient of 0.9996, and a detection limit of 0.06muM. The proposed method was successfully applied for determination Trp, UA and AA in biological systems and pharmaceutical samples.  相似文献   

13.
A silver hexacyanoferrate nanoparticles/carbon nanotubes modified glassy carbon electrode was fabricated and then successfully used for the simultaneous determination of ascorbic acid, dopamine and uric acid by cyclic voltammetry. A detailed investigation by transmission electron microscopy (TEM) and electrochemistry was performed in order to elucidate the preparation process and properties of the nanocomposites. The size of silver hexacyanoferrate nanoparticles was examined by TEM around 27 nm. Linear calibration plots were obtained over the range of 4.0 × 10−6-7.8 × 10−5, 2.4 × 10−6-1.3 × 10−4 and 2.0 × 10−6-1.5 × 10−4 mol L−1 with detection limits of 4.2 × 10−7,1.4 × 10−7 and 6.0 × 10−8 mol L−1 for ascorbic acid, dopamine and uric acid, respectively. The practical analytical utilities of the modified electrode were demonstrated by the determination of ascorbic acid, dopamine and uric acid in urine and human blood serum samples.  相似文献   

14.
《Comptes Rendus Chimie》2014,17(5):465-476
A novel modified multiwall carbon nanotubes paste electrode with sodium dodecyl sulfate as a surfactant (SDS) has been fabricated through an electrochemical oxidation procedure and was used to electrochemically detect dopamine (DA), ascorbic acid (AA), uric acid (UA), and their mixture by cyclic voltammetry (CV) and differential voltammetry (DPV) methods. Several factors affecting the electrocatalytic activity of the hybrid material, such as the effect of pH, of the scan rate and of the concentration were studied. The bare carbon nanotubes paste electrode (BCNTPE) and SDS-modified carbon nanotubes paste electrode (SDSMCNTPE) were characterized using Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive X-ray spectroscopy (EDX). Using the CV procedure, a linear analytical curve was observed in the 1 × 10−6–2.8 × 10−5 M range with a detection limit at 3.3 × 10−7 M in pH 6.5, 0.2 M phosphate buffer solutions (PBS).  相似文献   

15.
A modified electrode is fabricated by embedding gold nanoparticles into a layer of electroactive polymer, poly(4-aminothiophenol) (PAT) on the surface of glassy carbon (GC) electrode. Cyclic voltammetry (CV) is performed to deposit PAT and concomitantly deposit Au nanoparticles. Field emission transmission electron microscopic image of the modified electrode, PAT-Aunano-ME, indicates the presence of uniformly distributed Au nanoparticles having the sizes of 8-10 nm. Electrochemical behavior of the PAT-Aunano-ME towards detection of ascorbic acid (AA) and dopamine (DA) is studied using CV. Electrocatalytic determination of DA in the presence of fixed concentration of AA and vice versa, are studied using differential pulse voltammetry (DPV). PAT-Aunano-ME exhibits two well defined anodic peaks at the potential of 75 and 400 mV for the oxidation of AA and DA, respectively with a potential difference of 325 mV. Further, the simultaneous determination of AA and DA is studied by varying the concentration of AA and DA. PAT-Aunano-ME exhibits selectivity and sensitivity for the simultaneous determination of AA and DA without fouling by the oxidation products of AA or DA. PAT and Au nanoparticles provide synergic influence on the accurate electrochemical determination of AA or DA from a mixture having any one of the component (AA or DA) in excess. The practical analytical utilities of the PAT-Aunano-ME are demonstrated by the determination of DA and AA in dopamine hydrochloride injection and human blood serum samples.  相似文献   

16.
This work reports on the preparation of electrochemically reduced graphene oxide (ERGO)-poly(eriochrome black T) (pEBT) assembled gold nanoparticles for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in PBS pH 6.0. Characterisations of the composite were carried out by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. As a result of the synergistic effect, the modified glassy carbon electrode (GCE) possessed an efficient electrochemical catalytic activity with a high selectivity and sensitivity in oxidising AA-DA and DA-UA as compared to the bare GCE. The peak separations of AA and DA, DA and UA were 183 mV and 150 mV, respectively. The linear response ranges for AA, DA and UA were 10–900 μM, 0.5–20 μM and 2–70 μM with detection limits of 0.53 μM, 0.009 μM and 0.046 μM (S/N = 3), respectively. The sensitivity of ERGO-pEBT/AuNPs was measured as 0.003 µA/μM, 0.164 µA/μM and 0.034 µA/μM for AA, DA, and UA, respectively. The modified electrochemical sensor was used in the determination of AA, DA, and UA in vitamin C tablets and urine sample with good recovery.  相似文献   

17.
Salimi A  Mamkhezri H  Hallaj R 《Talanta》2006,70(4):823-832
A sol-gel carbon composite electrode (CCE) has been prepared by mixing a sol-gel precursor (e.g. methyltrimethoxysilane) and carbon powder without adding any electron transfer mediator or specific reagents. It was demonstrated that this sensor can be used for simultaneous determination ascorbic acid, neurotransmitters (dopamine and adrenaline) and uric acid. Direct electrochemical oxidation of ascorbic acid, uric acid and catecholamines at a carbon composite electrode was investigated. The experimental results were compared with other common carbon based electrodes, specifically, boron doped diamond, glassy carbon, graphite and carbon paste electrodes. It was found that the CCE shows a significantly higher of reversibility for dopamine. In addition, in comparison to the other electrodes used, for CCE the oxidation peaks of uric acid, ascorbic acid and catecholamines in cyclic and square wave voltammetry were well resolved at the low positive potential with good sensitivity. The advantages of this sensor were high sensitivity, inherent stability and simplicity and ability for simultaneous determination of uric acid, catecholamines and ascorbic acid without using any chromatography or separation systems. The analytical performance of this sensor has been evaluated for detection of biological molecules in urine and serum as real samples.  相似文献   

18.
研究了十六烷基三甲基溴化铵(CTMAB)/多壁碳纳米管修饰玻碳电极的制备以及多巴胺和抗坏血酸在该修饰电极上的电化学行为。在CTMAB和多壁碳纳米管的协同作用下,该修饰电极对多巴胺和抗坏血酸均具有显著的催化氧化作用,多巴胺和抗坏血酸的氧化峰电位分别为223mV和15mV,实现了在抗坏血酸共存时测定多巴胺。在pH7.0的磷酸盐缓冲溶液中,多巴胺和抗坏血酸的线性范围分别为2.0×10-6~2.0×10-3mol/L和4.0×10-5~1.0×10-2mol/L,检出限分别为6.0×10-7mol/L和1.0×10-5mol/L。  相似文献   

19.
A poly(caffeic acid) thin film was deposited on the surface of a glassy carbon electrode by potentiostatic technique in an aqueous solution containing caffeic acid. The poly(caffeic acid)-modified electrode was used for the determination of ascorbic acid (AA), dopamine (DA), and their mixture by cyclic voltammetry. This modified electrode exhibited a potent and persistent electron-mediating behavior followed by well-separated oxidation peaks toward AA and DA at a scan rate of 10 mV s−1 with a potential difference of 135 mV, which was large enough to determine AA and DA individually and simultaneously. The catalytic peak current obtained was linearly dependent on the AA and DA concentrations in the range of 2.0 × 10−5−1.2 × 10−3 and 1.0 × 10−6−4.0 × 10−5 mol L−1 in 0.15 mol L−1 phosphate buffer (pH 6.64). The detection limits for AA and DA were 9.0 × 10−6 and 4.0 × 10−7 mol L−1, respectively. The modified electrode shows good sensitivity, selectivity, and stability and has been applied to the determination of DA and AA in real samples with satisfactory results.  相似文献   

20.
Li J  Lin XQ 《Analytica chimica acta》2007,596(2):222-230
A novel biosensor was fabricated by electrochemical deposition of gold nanoclusters on ultrathin overoxidized polypyrrole (PPyox) film, formed a nano-Au/PPyox composite on glassy carbon electrode (nano-Au/PPyox/GCE). The properties of the nanocomposite have been characterized by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD) and electrochemical investigations. The nano-Au/PPyox/GCE had strongly catalytic activity toward the oxidation of epinephrine (EP), uric acid (UA) and ascorbic acid (AA), and resolved the overlapping voltammetric response of EP, UA and AA into three well-defined peaks with a large anodic peak difference. The catalytic peak currents obtained from differential pulse voltammetry increased linearly with increasing EP and UA concentrations in the range of 3.0 × 10−7 to 2.1 × 10−5 M and 5.0 × 10−8 to 2.8 × 10−5 M with a detection limit of 3.0 × 10−8 and 1.2 × 10−8 M (s/n = 3), respectively. The results showed that the modified electrode can selectively determine EP and UA in the coexistence of a large amount of AA. In addition, the sensor exhibited excellent sensitivity, selectivity and stability. The nano-Au/PPyox/GCE has been applied to determination of EP in epinephrine hydrochloride injection and UA in urine samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号