首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文合成了8个 四羧酸多联体化合物;测定了这些化合物的吸收光谱、荧光光谱。研究了由供电子分子键连的多联体分子的光谱特性及其分子体系内稳态荧光猝灭机理。首次从吸收光谱和荧光光谱上分析和考察了四羧酸多联体化合物分子体系内的光致电子转移反应。  相似文献   

2.
The spectral behavior and fluorescence quantum yield of perylene-3,4,9,10-tetracarboxylic tetramethylester (PTME) have been measured in different solvents. Both electronic absorption and fluorescence spectra are not sensitive to medium polarity. The dye exhibits high fluorescence quantum yield and high photostable. Crystalline solid of PTME gives excimer-like emission at 530 nm. The laser activity of PTME has been investigated. The dye solution in N,N-dimethylformamide (DMF) gives laser emission around 480 nm upon excitation by 337.1 nm nitrogen laser pulse. The excitation energy transfer from 7-dimethylamino-4-methylcoumarine (DMC) to PTME has also has been studied and the value of energy transfer rate constant, k(ET), and critical transfer distance, R(0) indicate a F?rster-type mechanism. The photodecomposition of PTME in chloromethane solvents has been also studied. We applied semiempirical MO calculations using (PM3 and ZINDO-CI) calculations to explain the geometric and electronic behaviors of the PTME molecule in both ground and excited states and make a correlation with the experimental observations.  相似文献   

3.
A new electrochemical immunosensor for the detection of α‐1‐fetoprotien (AFP) was developed based on AFP antibody (anti‐AFP)‐functionalized organic/inorganic hybrid nanocomposite membrane. To fabricate such a hybrid composite membrane, 3,4,9,10‐perylenetetracarboxylic acid‐bound thionine molecules (PTCTH) were initially doped into titania colloids (TiO2), and then gold nanoparticles and anti‐AFP were immobilized onto the composite film in turn. Comparison with the electrode fabricated only with thionine not 3,4,9,10‐perylenetetracarboxylic acid, the immunosensor with PTCTH exhibited high sensitivity and fast electron transfer. The presence of gold nanoparticles provided a good microenvironment for the immobilization of biomolecules, enhanced the surface coverage of protein, and improved the sensitivity of the immunosensor. The modified process was characterized by scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The surface topography of the membrane was investigated by scanning electron microscopy (SEM). Under optimal conditions, the proposed immunosensor exhibited a wide linear range from 2.5 to 200.0 ng/mL towards AFP with a detection limit of 0.5 ng/mL (S/N=3). The stability, reproducibility and precision of the immunosensor were acceptable. Comparison with the conventional enzyme‐linked immunosorbent assay (ELISA), the present method did not require more labeled procedures and washing steps. Significantly, the detection methodology provides a promising approach for other proteins or biosecurities.  相似文献   

4.
A cationic water‐soluble conjugated polyelectrolyte, poly[9,9‐bis(6′′‐(N,N,N‐trimethylammonium)hexyl)fluorene‐co‐alt‐2,5‐bis(6′‐(N,N,N‐trimethylammonium)hexyloxyphenylene) tetrabromide], was synthesized. Fluorescence resonant energy transfer (FRET) experiments between the polymer and fluorescein‐labeled single‐stranded DNA (ssDNA‐Fl) were conducted in aqueous buffer and THF/buffer mixtures. Weak fluorescence emission in aqueous buffer was observed upon excitation of the polymer, whereas addition of THF turned on the fluorescence. Fluorescence self‐quenching of ssDNA‐Fl in the ssDNA‐Fl/polymer complexes as well as electron transfer from the polymer to fluorescein may account for the low fluorescence emission in buffer. The improved sensitization of fluorescence by the polymer observed in THF/buffer could be attributed to the weaker binding between the polymer and ssDNA‐Fl and a decrease in dielectric constant of the solvent mixture, which disfavors electron transfer. THF‐assisted signal sensitization was also observed for the polymer and fluorescein‐labeled double‐stranded DNA (dsDNA‐Fl). These results indicate that the use of cosolvent provides a strategy to improve the detection sensitivity for biosensors based on the optical amplification provided by conjugated polymers.  相似文献   

5.
Three new anthracene derivatives [2‐chloro‐9,10‐dip‐tolylanthracene (DTACl), 9,10‐dip‐tolylanthracene‐2‐carbonitrile (DTACN), and 9,10‐di(naphthalen‐1‐yl)anthracene‐2‐carbonitrile (DNACN)] were synthesized as triplet acceptors for low‐power upconversion. Their linear absorption, single‐photon‐excited fluorescence, and upconversion fluorescence properties were studied. The acceptors exhibit high fluorescence yields in DMF. Selective excitation of the sensitizer PdIIoctaethylporphyrin (PdOEP) in solution containing DTACl, DTACN, or DNA‐CN at 532 nm with an ultralow excitation power density of 0.5 W cm?2 results in anti‐Stokes blue emission. The maximum upconversion quantum yield (ΦUC=17.4 %) was obtained for the couple PdOEP/DTACl. In addition, the efficiency of the triplet–triplet energy transfer process was quantitatively studied by quenching experiments. Experimental results revealed that a highly effective acceptor for upconversion should combine high fluorescence quantum yields with efficient quenching of the sensitizer triplet.  相似文献   

6.
Organic nanoparticles consisting of 3,3′‐diethylthiacyanine (TC) and ethidium (ETD) dyes are synthesized by ion‐association between the cationic dye mixture (10 % ETD doping) and the tetrakis(4‐fluorophenyl)borate (TFPB) anion, in the presence of a neutral stabilizing polymer, in aqueous solution. Doping with ETD makes the particle size smaller than without doping. Size tuning can also be conducted by varying the molar ratio (ρ) of the loaded anion to the cationic dyes. The fluorescence spectrum of TC shows good overlap with the absorption of ETD in the 450–600 nm wavelength region, so efficient excitation‐energy transfer from TC (donor) to ETD (acceptor) is observed, yielding organic nanoparticles whose fluorescence colours are tunable. Upon ETD doping, the emission colour changes significantly from greenish‐blue to reddish or whitish. This change is mainly dependent on ρ. For the doped nanoparticle sample with ρ=1, the intensity of fluorescence ascribed to ETD is ~150‐fold higher than that from pure ETD nanoparticles (efficient antenna effect). Non‐radiative Förster resonance‐energy transfer (FRET) is the dominant mechanism for the ETD fluorescence enhancement. The organic nanoparticles of a binary dye system fabricated by the ion‐association method act as efficient light‐harvesting antennae, which are capable of transferring light energy to the dopant acceptors in very close proximity to the donors, and can have multi‐wavelength emission colours with high fluorescence quantum yields.  相似文献   

7.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

8.
A novel perylenetetracarboxylic diimide (PDI) derivative, N,N′-di(4′-benzo-15-crown-5-ether)-1,7-di(4-tert-butyl-phenoxy)perylene-3,4;9,10-tetracarboxylic diimide (CRPDI), has been synthesised and characterised. Dimerisation of CRPDI is induced by the presence of K+ in CHCl3 or spontaneously occurs in methanol, as revealed by absorption and emission spectroscopy. In particular, the formation of co-facial dimer in the presence of K+ proceeds in a three-stage process, as indicated by absorption spectroscopy. The belt- and rope-like nanostructures of CRPDI fabricated from methanol and CHCl3 solution in the presence of K+ are obtained by scanning electron microscopy. Furthermore, the conductivity of the rope-like nanostructures from the cation-induced dimeric species is more than ca. 1 order of magnitude higher than the belt-like nanostructures from the solvent-induced dimeric species. The present result represents the further effort towards realisation of controlling and tuning the morphology of self-assembled nanostructures of PDI derivatives through molecular design and synthesis. It will be valuable for the design and preparation of PDI-based nano-(opto)electronic devices with good performance due to the close relationship between the molecular ordering and dimensions of nanostructures and the performance of nanodevices.  相似文献   

9.
Carbon nanodots (C‐dots) with an average size of 1.5 and 3.0 nm were produced by laser ablation in different imidazolium ionic liquids (ILs), namely, 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate (BMI.BF4), 1‐n‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2) and 1‐n‐octyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (OMI.NTf2). The mean size of the nanoparticles is influenced by the imidazolium alkyl side chain but not by the nature of the anion. However, by varying the anion (BF4 vs. NTf2) it was possible to detect a significant modification of the fluorescence properties. The C‐dots are much probably stabilised by an electrostatic layer of the IL and this interaction has played an important role with regard to the formation, stabilisation and photoluminescence properties of the nanodots. A tuneable broadband fluorescence emission from the colloidal suspension was observed under ultraviolet/visible excitation with fluorescence lifetimes fitted by a multi‐exponential decay with average values around 7 ns.  相似文献   

10.
Summary Theoretical molecular geometries of the perylene derivatives 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA), 3,4,9,10-perylene tetracarboxylic diimide (PTCDI), N,N-dimethyl 3,4,9,10-perylene tetracarboxylic diimide (MePTCDI), and 3,4,9,10-perylene tetracarboxylic disulfide (PTCDS) are presented for the electronic statesS 0 andS 1. On this basis, the electronic absorption properties can be interpreted and compared with experimentel data. The vibronic structure ofS 0 S 1 absorption andS 1 S 0 fluorescence has been reproduced. The analysis of the active vibrational modes shows a corresponding behaviour of derivatives and perylene.
Theoretische Untersuchungen der Absorption und Fluoreszenz von Perylen und seinen Tetracarbonsäure-Derivaten
Zusammenfassung Theoretische Molekülgeometrien der Perylen-Derivate 3,4,9,10-Perylentetracarbonsäuredianhydrid (PTCDA), 3,4,9,10-Perylentetracarbonsäurediimid (PTCDI), N,N-Dimethyl-3,4,9,10-Perylentetracarbonsäurediimid (MePTCDI) und 3,4,9,10-Perylentetracarbonsäuredisulfid (PTCDS) für die elektronischen ZuständeS 0 undS 1 werden vorgestellt. Auf dieser Grundlage können die elektronischen Absorptionseigenschaften interpretiert und mit experimentellen Daten verglichen werden. Die vibronische Struktur derS 0 S 1-Absorption und derS 1 S 2-Fluoreszenz konnte reproduziert werden. Die Analyse der aktiven Schwingungsmoden zeigen ein gegenüber Perylen vergleichbares Verhalten der Derivate.
  相似文献   

11.
A novel organic electron acceptor, N,N′-dipyrimidinyl-3,4,9,10-perylene-tetracarboxylic diimide (DMP), was designed and synthesized. The molecular structure was characterized by FTIR spectrum and elemental analysis. By cyclic voltammetry measurements, DMP was found to possess a lower LUMO energy level than N,N′-diphenyl-3,4,9,10-perylene-tetracarboxylic diimide due to the stronger electron-withdrawing pyrimidinyl group than the phenyl group. Fluorescence quenching is observed in a dual-layer film consisting of a DMP layer and a C60 layer and was attributed to the charge transfer at the interface due to the energy level offset between DMP and C60. Supported by the National Natural Science Foundation of China (Grant Nos. 50433020, 50520150165 & 50403022)  相似文献   

12.
A series of 17,17‐dialkyl‐3,14‐diaryltetrabenzofluorenes were efficiently prepared by using Suzuki–Miyaura cross‐coupling reactions of the corresponding 3,14‐dibromo derivatives. Studies of the unique fluorescence properties of these compounds showed that they display intense blue to yellow fluorescence with high quantum yields in the solution state and blue to orange fluorescence with moderate quantum yields in the solid state. In addition, the fluorescence wavelength of the bis(p‐nitrophenyl) derivative is remarkably solvent‐dependent in a manner that correlates with the solvent polarity parameter ET(30). The results of density function theory calculations suggest that the intramolecular charge‐transfer character of the HOMO–LUMO transition is responsible for the large solvent effect. Moreover, addition of water to a tetrahydrofuran (THF) solution of this compound leads to quenching of the yellow fluorescence owing to an increase in the solvent polarity. However, when the amount of water fraction exceeds 70 %, a new fluorescence band appears at the same orange‐red emission wavelength as that of the solid‐state fluorescence. This observation suggests the occurrence of a crystallization‐induced emission (CIE) phenomenon in highly aqueous THF.  相似文献   

13.
Conjugated polymer nanoparticles based on poly[9,9‐bis(2‐ethylhexyl)fluorene] and poly[N‐(2,4,6‐trimethylphenyl)‐N,N‐diphenylamine)‐4,4′‐diyl] are fabricated using anionic surfactant sodium dodecylsulphate in water by miniemulsion technique. Average diameters of polyfluorene and polytriarylamine nanoparticles range from 70 to 100 and 100 to 140 nm, respectively. The surface of the nanoparticles is decorated with triplet emitting dye, tris(2,2′‐bipyridyl)ruthenium(II) chloride. Intriguing photophysics of aqueous dispersions of these hybrid nanoparticles is investigated. Nearly 50% quenching of fluorescence is observed in the case of dye‐coated polyfluorene nanoparticles; excitation energy transfer is found to be the dominant quenching mechanism. On the other hand, nearly complete quenching of emission is noticed in polytriarylamine nanoparticle‐dye hybrids. It is proposed that the excited state electron transfer from the electron‐rich polytriarylamine donor polymer to Ru complex leads to the complete quenching of emission of polytriarylamine nanoparticles. The current study offers promising avenues for developing aqueous solution processed‐electroluminescent devices involving a conjugated polymer nanoparticle host and Ru or Ir‐based triplet emitting dye as the guest.

  相似文献   


14.
By using a copper‐promoted alkyne–azide cycloaddition reaction, two boron dipyrromethene (BODIPY) derivatives bearing a bis(1,2,3‐triazole)amino receptor at the meso position were prepared and characterized. For the analogue with two terminal triethylene glycol chains, the fluorescence emission at 509 nm responded selectively toward Hg2+ ions, which greatly increased the fluorescence quantum yield from 0.003 to 0.25 as a result of inhibition of the photoinduced electron transfer (PET) process. By introducing two additional rhodamine moieties at the termini, the resulting conjugate could also detect Hg2+ ions in a highly selective manner. Upon excitation at the BODIPY core, the fluorescence emission of rhodamine at 580 nm was observed and the intensity increased substantially upon addition of Hg2+ ions due to inhibition of the PET process followed by highly efficient fluorescence resonance energy transfer (FRET) from the BODIPY core to the rhodamine moieties. The Hg2+‐responsive fluorescence change of these two probes could be easily seen with the naked eye. The binding stoichiometry between the probes and Hg2+ ions in CH3CN was determined to be 1:2 by Job′s plot analysis and 1H NMR titration, and the binding constants were found to be (1.2±0.1)×1011 m ?2 and (1.3±0.3)×1010 m ?2, respectively. The overall results suggest that these two BODIPY derivatives can serve as highly selective fluorescent probes for Hg2+ ions. The rhodamine derivative makes use of a combined PET‐FRET sensing mechanism which can greatly increase the sensitivity of detection.  相似文献   

15.
The photosensitization effect of three perylene dye derivatives on titanium dioxide nanoparticles (TiO2 NPs) has been investigated. The dyes used, 1,7‐dibromoperylene‐3,4,9,10‐tetracarboxy dianhydride (1), 1,7‐dipyrrolidinylperylene‐3,4,9,10‐tetracarboxy dianhydride (2) and 1,7‐bis(4‐tert‐butylphenyloxy)perylene‐3,4,9,10‐tetracarboxy dianhydride (3) have in common bisanhydride groups that convert into TiO2 binding groups upon hydrolysis. The different substituents on the bay position of the dyes enable tuning of their redox properties to yield significantly different driving forces for photoinduced electron transfer (PeT). Recently developed TiO2 NPs having a small average size and a narrow distribution (4 ± 1 nm) are used in this work to prepare the dye‐TiO2 systems under study. Whereas successful sensitization was obtained with 1 and 2 as evidenced by steady‐state spectral shifts and transient absorption results, no evidence for the attachment of 3 to TiO2 was observed. The comparison of the rates of PeT (kPeT) for 1‐ and 2‐TiO2 systems studied in this work with those obtained for previously reported analogous systems, having TiO2 NPs covered by a surfactant layer (Hernandez et al. [2012] J. Phys. Chem. B., 117, 4568–4581), indicates that kPeT for the former systems is slower than that for the later. These results are interpreted in terms of the different energy values of the conduction band edge in each system.  相似文献   

16.
An ultrathin poly(methyl methacrylate) (PMMA) buffer layer was developed to improve the performance of n‐channel organic thin‐film transistors (OTFTs). The 8 nm‐thick PMMA film, prepared by spin‐coating, provided a very smooth surface and a uniform coverage on SiO2 surface reproducibly, which was confirmed by X‐ray reflectivity (XR) measurement. Then, we fabricated N,N′‐ditridecyl‐3,4,9,10‐perylenetetracarboxylic diimide (PTCDI‐C13) thin‐film transistors with and without this 8 nm‐thick PMMA insulating layer on SiO2 gate insulators and achieved one‐order increase of field‐effect mobility (up to 0.11 cm2/(Vs) in a vacuum), one‐half decrease of threshold voltage, and reduction of current hysteresis with the PMMA layer. Only TFTs with the PMMA layer displayed n‐channel operation in air and showed field‐effect mobility of 0.10 cm2/(Vs). We consider that electrical characteristics of n‐channel OTFTs were considerably improved because the ultrathin PMMA film could effectively passivate the SiO2 insulator surface and decrease interfacial electron traps. This result suggests the importance of the ultrathin PMMA layer for controlling the interfacial state at the semiconductor/insulator interface and the device characteristics of OTFTs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A series of dinuclear cycloplatinated(II) complexes with general closed formula of [Pt2Me2(C^N)2(μ‐P^P)] (C^N = 2‐vinylpyridine (Vpy), 2,2′‐bipyridine N‐oxide (O‐bpy), 2‐(2,4‐difluorophenyl)pyridine (dfppy); P^P = 1,1‐bis(diphenylphosphino)methane (dppm), N,N‐bis(diphenylphosphino)amine (dppa)) are reported. The complexes were characterized by means of NMR spectroscopy. Due to the presence of dppm and dppa with short backbones as bridging ligands, two platinum centres are located in front of each other in these complexes so a Pt…Pt interaction is established. Because of this Pt…Pt interaction, the complexes have bright orange colour under ambient light and are able to strongly emit red light under UV light exposure. These strong red emissions originate from a 3MMLCT (metal–metal‐to‐ligand charge transfer) electronic transition. In most of these complexes, the emissions have unstructured bell‐shaped bands, confirming the presence of large amount of 3MMLCT character in the emissive state. Only the complexes bearing dfppy and dppa ligands reveal dual luminescence: a high‐energy structured emission originating from 3ILCT/3MLCT (intra‐ligand charge transfer/metal‐to‐ligand charge transfer) and an unstructured low‐energy band associated with 3MMLCT. In order to describe the nature of the electronic transitions, density functional theory calculations were performed for all the complexes.  相似文献   

18.
以三苯胺(1),乙二胺和3,4,9,10-苝四甲酸二酐为原料,合成了一种新型的三苯胺-苝酰亚胺分子阵列(5),其结构经~1H NMR和IR表征.用UV-Vis和荧光发射光谱研究了5的光学性能,结果表明5中发生了从三苯胺基元到苝酰亚胺基元的分子内能量转移过程.  相似文献   

19.
Noncovalent interactions, such as π–π stacking interactions, C—H…π interactions and hydrogen bonding, are important driving forces for self‐assembly in the construction of functional supermolecules and materials, especially in multicomponent supramolecular systems. Herein, a novel compound based on a π‐acidic naphthalene diimide derivative and a double hydroxide‐bridged dinuclear Al3+ aqua ion cluster, namely bis[N,N′‐bis(2‐sulfonatoethyl)‐1,4,5,8‐naphthalene diimide] di‐μ‐hydroxido‐bis[tetraaquaaluminium(III)] tetrahydrate, (C18H12N2O10S2)2[Al2(OH)2(H2O)8]·4H2O, was obtained using the above‐mentioned common noncovalent interactions, as well as uncommon lone‐pair–π interactions. Functional molecular modules were connected by these noncovalent interactions to generate obvious photochromic properties. The compound was prepared by the self‐assembly of N,N′‐bis(2‐sulfoethyl)‐1,4,5,8‐naphthalene diimide and Al(NO3)3·9H2O under mixed solvothermal conditions, and was characterized in detail by single‐crystal X‐ray diffraction, powder X‐ray diffraction and FT–IR spectroscopy. The thermal stability and photochromic properties were also investigated; furthermore, in‐situ solid‐state UV–Vis absorption spectroscopy and electron spin resonance (ESR) were used to clarify the photochromic mechanism.  相似文献   

20.
Novel phenylene-bridged zinc bisporphyrins (1-4), fulleropyrrolidines (C60-m, C60-h) and their N-oxides (C60-mo, C60-ho) were synthesized. The fluorescence quenching processes of bisporphyrins in toluene solution by fulleropyrrolidines and their N-oxides were investigated by steady-state fluorescence spectra. The fluorescence quenching constants proved that the fluorescence quenching ability was decreased as reduction of the pyrrolidine functional groups of fullerene surface: C60-h〉C60-m〉C60, and the fluorescence quenching ability was increased about 1.3-7.4 times by utilizing fulleropyrrolidine N-oxides (C60-mo, C60-ho) compared to fulleropyrrolidine compounds (C60-m, C60-h). The results revealed photoinduced electron transfer (PET) efficiency between bispor-phyrin and fullerene derivatives could be tunable by change of functional groups on fullerene surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号