首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Mesoporous silica SBA-15 has been synthesized and functionalized by one-step synthesis method to widen their various application possibilities. In this study, phenyltrimethoxysilane (PTMS), 3-mercaptopropyltrimethoxysilane (MPTMS) and trimethoxypropylsilane (TMPS) were used as silane precursors for the functionalization, and after treated with HCl solution, their catalytic activities were evaluated in the lactic acid-methanol esterification. The presence of anchoring of functional groups on SBA-15 was proved by XRD, FT-IR, BET surface area and pore size distributions. Good catalytic activity was observed especially for SBA-15-SO(3)H-MPTMS, and the catalytic activity order was determined as follows: SBA-15-SO(3)H-MPTMS>SBA-15-TMPS>SBA-15-PTMS, which is directly associated with the surface area, pore size and pore volume. As compared with homogeneous catalyst, SBA-15-SO(3)H-MPTMS heterogeneous catalyst shows remarkable performance, such as separation, recovery and reusability.  相似文献   

2.
A highly ordered large pore mesoporous silica molecular sieve SBA-3, SBA-15, Al-SBA-15, and SBA-1, were developed and characterized by XRD, BET, FTIR, SEM, and NMR-MAS. The catalytic materials were synthesized using different raw materials and operation conditions. These materials contain a regular arrangement of uniform channels with diameters between 1.8 and 10 nm, high specific surface area and high specific pore volume. The designed methods were effective for the synthesis, presenting each mesostructured materials, patterns of XRD and other characteristics corresponding to the reported ones in literature. The new route employed to synthesize Al-SBA-15, generates a catalyst with only aluminum in tetrahedral form, according to the data of (27)Al NMR-MAS. However, several reports indicated that the coordination of the Al atoms changes below the Si/Al ratio of 45, presenting peaks corresponding to penta and hexa-coordinated aluminum, which are absent in our samples (Si/Al = 50 and 33).  相似文献   

3.
PtZn-Sn/SBA-15合成、表征及对丙烷催化脱氢性能   总被引:4,自引:0,他引:4  
以SBA-15为载体,利用浸渍法制备了单、双和三金属Pt催化剂,并对催化剂进行了N2物理吸附(BET)、程序升温还原(H2-TPR)、H2-化学吸附、透射电子显微镜(TEM)和O2-脉冲等技术表征,研究了它们对丙烷催化脱氢(CDH)制丙烯反应的催化性能。研究结果表明,Pt在三金属催化剂中的分散性能最好,并且部分负载组分可以进入SBA-15的孔道,Pt的分散度达到29%,Pt粒子尺寸为3 nm左右。三金属催化剂表现出优越的脱氢性能,这主要归结于载体的弱酸性、活性组分和助剂、载体之间的相互作用及Zn对Pt的电子调控作用。这些因素使催化剂的积炭量较低,因而具有较高的脱氢稳定性和极高的选择性。  相似文献   

4.
Well-ordered cubic mesoporous silicas SBA-1 functionalized with sulfonic acid groups have been synthesized through in situ oxidation of mercaptopropyl groups with H(2)O(2) via co-condensation of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) templated by cetyltriethylammonium bromide (CTEABr) under strong acidic conditions. Various synthesis parameters such as the amounts of H(2)O(2) and MPTMS on the structural ordering of the resultant materials were systematically investigated. The materials thus obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), multinuclear solid-state Nuclear Magnetic Resonance (NMR) spectroscopy, (29)Si{(1)H} 2D HETCOR (heteronuclear correlation) NMR spectroscopy, thermogravimetric analysis (TGA), and nitrogen sorption measurements. By using (13)C CPMAS NMR technique, the status of the incorporated thiol groups and their transformation to sulfonic acid groups can be monitored and, as an extension, to define the optimum conditions to be used for the oxidation reaction to be quantitative. In particular, (29)Si{(1)H} 2D HETCOR NMR revealed that the protons in sulfonic acid groups are in close proximity to the silanol Q(3) species, but not close enough to form a hydrogen bond.  相似文献   

5.
SBA-15 mesoporous silica was synthesized by hydrothermal method and its surface was methylated by treatment with methyltrimethoxysilane. Pepsin was immobilized on the obtained materials giving host-guest composite materials (SBA-15)-pepsin and (methylated SBA-15)-pepsin. The optimum conditions for preparation of these materials were established. Methylated SBA-15 (M-SBA-15) has improved immobilization efficiency of enzyme compared to initial SBA-15 silica. It was shown that with the gradual increase of NaCl solution ionic strength the immobilized amount of enzyme was reduced. Powder X-ray diffraction and Fourier transform infrared spectroscopy showed that the host frameworks in the prepared host-guest composite materials are intact and the ordered structure was retained. Scanning electron microscopic studies revealed fibrous morphologic characteristics of the SBA-15 and the immobilized pepsin composite materials. The average particle diameter of (SBA-15)-pepsin composite was 338 ± 10 and 343 ± 10 nm for (M-SBA-15)-pepsin. The low temperature N2 adsorption-desorption study at 77 K showed that the pore sizes and specific surface areas of the host-guest composite materials were smaller than those before the introduction of the enzyme, suggesting that the immobilized enzyme occupied a definite position in the host material pore channels. The UV-vis solid diffuse reflectance and luminescence studies showed that the enzyme was successfully immobilized on to the host material and that after the immobilization of enzyme on SBA-15 the conformation of pepsin macromolecule has not been changed.  相似文献   

6.
A series of copper-containing SBA-15 samples were successfully synthesized via evaporation-induced self-assembly route. The resulting materials were characterized by X-ray diffraction (XRD), (29)Si MAS NMR spectroscopy, transmission electron microscopy (TEM), N(2) sorption, inductively coupling plasma-atomic emission spectrometer (ICP-AES), thermogravimetry, and differential thermal analysis (TG-DTA), Fourier-transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectra (UV-vis) and X-ray photoelectron spectroscopy (XPS). The results indicated that: (1) all the samples exhibited typical hexagonal arrangement of mesoporous structure; (2) copper ions could be incorporated into the framework of SBA-15; (3) the addition of urea in the hydrothermal stage efficiently reduced the leaching of copper and improved the thermal stability of the mesoporous materials. Catalytic performances of the obtained materials were evaluated in the hydroxylation of phenol with H(2)O(2). The catalytic tests showed that the synthesized materials exhibited high activity for this reaction and copper ions in the framework were more active than copper species in the extra-framework position. The nitric acid treatment on the samples removed the bulk CuO species, which resulted in a dramatic increase in the catalytic activity.  相似文献   

7.

Functionalized SBA-15 (immobilization of Pd on the modified SBA-15) has been used as an efficient catalyst for the preparation of spiroindolines by multi-component reactions of isatins, cyclic-1,3-diketones, and 6-amino-1,3-dimethyluracil under ultrasonic irradiation in water. The catalyst has been characterized by X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption analysis, temperature-programmed desorption (TPD), and thermogravimetric analysis (TGA). The advantages of this method include the reusability of the catalyst, low catalyst loading, excellent yields in short reaction times and easy separation of products, and use of ultrasonic irradiation as a valuable and powerful technology.

  相似文献   

8.
Fe-SBA-15 materials with different Si/Fe ratios (Si/Fe = 100, 60, 15) have been synthesized by hydrothermal method and characterized by several spectroscopic techniques. Electron spin resonance and Mössbauer spectroscopy, along with electron microscopy and X-ray diffraction, allowed differentiation of several iron species. These species correspond to hematite particles, very small “isolated” or oligomeric FeIII species possibly incorporated in the mesoporous silica wall, and FeIII oxide clusters either isolated or agglomerated, forming “rafts” at the surface of the silica and exhibiting ferromagnetic ordering. Because of their agglomeration, these clusters appear with a two-peak size distribution, with one peak corresponding to the isolated clusters formed in the mesopores and still embedded in them and the other corresponding to the agglomerates spread on the surface of the mesoporous silica particles.  相似文献   

9.
Rare earth metal sandwiched Keggin-type heteropolyoxometalates, K11[RE(PW11O39)2] (RE–PW11, RE = La, Ce, Pr, Nd, Sm, Eu, Dy and Y), were anchored onto aminosilylated mesoporous silica SBA-15 and the resulting RE–PW11/APTS/SBA-15 materials were characterized by ICP, FT-IR, XRD, N2 adsorption, 31P MAS NMR and TEM. The RE–PW11 clusters preserve their structure in the surface-modified mesopores. The catalytic activity of RE–PW11 clusters was tested on heterogeneous oxidation of cyclohexene by H2O2. The interaction between RE–PW11 and amino groups grafted on the channel surface of SBA-15 leads to strong immobilization of RE–PW11 due to the introduction of the rare earth metal centre, which is against the leaching during the reaction.  相似文献   

10.
Preparation of hybrid organic-inorganic MCM-41 and SBA-15 silicas functionalized with perfluoroalkylsulfonic acid groups has been achieved in a single step by reacting the mesoporous silicas with 1,2,2-trifluoro-2-hydroxy-1-trifluoromethylethane sulfonic acid beta-sultone; the catalysts showed higher activity than commercial Nafion-silica composite for the esterification of long chain fatty acids with ethanol.  相似文献   

11.
A series of Co-Ni2P/SBA-15 catalysts with various Co contents, Ni2P contents and P/Ni molar ratios were prepared by impregnating nickel nitrate, diammonium hydrogen phosphate, and then cobalt nitrate into SBA-15 support followed by temperature-programmed reduction in a H2 flow. The catalyst structure was characterized by X-ray diffraction(XRD), high resolution-transmission electron microscopy(HR-TEM)and N2adsorption-desorption techniques and their catalytic performance of the hydrodesulfurization(HDS) of dibenzothiophene(DBT) was evaluated. The effects of Co contents, Ni2 P contents and P/Ni molar ratios on the catalyst structure and HDS of DBT over the Co-Ni2P/SBA-15 catalyst were investigated. The results indicated that the mesoporous structure was mainly maintained and the nickel phosphides were well dispersed in all of the characterized catalysts. The 4Co-25Ni2P/SBA-15(P/Ni = 0.8) catalyst with the Co and Ni2 P contents of 4 wt% and25 wt%, respectively, and the P/Ni molar ratio of 0.8 showed the highest catalytic performance for HDS of DBT. Under the reaction conditions of 380?C and 3.0 MPa, the DBT conversion can reach 99.62%. The HDS of DBT proceeded mainly via the direct desulfurization(DDS)pathway with biphenyl(BP) as the dominant product on all of the catalysts and the BP selectivity was slightly enhanced after the introduction of Co promoters.  相似文献   

12.
A novel series of luminescent mesoporous organic-inorganic hybrid materials has been prepared by linking Eu3+ complexes to the functionalized ordered mesoporous SBA-15 which was synthesis by a co-condensation process of 1,3-diphenyl-1,3-propanepione (DBM) modified by the coupling agent 3-(triethoxysilyl)-propyl isocyanate (TEPIC), tetraethoxysilane (TEOS), Pluronic P123 surfactant as a template. It was demonstrated that the efficient intramolecular energy transfer in the mesoporous material Eu(DBMSi-SBA-15)3phen mainly occurred between the modified DBM (named as DBM-Si) and the central Eu3+ ion. So the Eu(DBMSi-SBA-15)3phen showed characteristic emission of Eu3+ ion under UV irradiation with higher luminescence quantum efficiency. Moreover, the mesoporous hybrid materials exhibited excellent thermal stability as the lanthanide complex was covalently bonded to the mesoporous matrix.  相似文献   

13.
This work presents some applications of ZrO2 supported over SBA-15 silica as promoter of sulfated zirconia and as support from CuO/CeO2 catalytic system for preferential oxidation of CO to CO2 in hydrogen rich streams, used as feed for proton exchange membrane fuel cells (PEMFC). Different amounts of ZrO2, from 10 to 30 wt.% were incorporated. These prepared materials were characterized by powder XRD, adsorption-desorption of N2 at 77 K, transmission and scanning electron microscopy (TEM and SEM) and X-rays photoelectron spectroscopy (XPS). The acidity was studied by thermo-programmed desorption of ammonia (NH3-TPD). These materials were tested, after treatment with H2SO4, by 2-propanol dehydration and 1-butene isomerization catalytic tests. The samples were found quite good catalyst with strong acid sites, the sample with 20 wt.% of ZrO2 being the better performing sample. Finally this material was successfully used as support for a CuO/CeO2 system, with 6 wt.% of Cu and 20 wt.% of Ce. The resulting catalyst was tested in the preferential oxidation of CO (CO-PROX) attaining conversions close to 100% and high selectivity to CO2.  相似文献   

14.
通过一步法合成了SBA-15-SO3H介孔分子筛,用XRD,TEM,低温N2吸附和吡啶吸附红外光谱等方法进行了表征,并研究了其在苯酚叔丁基化反应中的催化性能.结果表明,SBA-15-SO3H保持了母体SBA-15高度有序的六方介孔结构,具有较强的酸性和热稳定性,且在苯酚叔丁基化反应中表现较好的催化活性和2,4-二叔丁基苯酚选择性.  相似文献   

15.
Synthesis of copper nanoparticles was carried out with nanocrystalline cellulose (NCC) as a support by reducing CuSO4·5H2O ions using hydrazine. Ascorbic acid and aqueous NaOH were also used as an antioxidant and pH controller, respectively. The synthesized copper nanoparticles supported on NCC (CuNPs@NCC) were characterized by UV–vis, XRD, TEM, XRF, TGA, DSC, N2 adsorption-desorption method at 77 K and FTIR. The UV–vis confirmed the formation and stability of the CuNPs, which indicated that the maximum absorbance of CuNPs@NCC was at 590 nm due to the surface plasmon absorption of CuNPs. Morphological characterization clearly showed the formation of a spherical structure of the CuNPs with the mean diameter and standard deviation of 2.71 ± 1.12 nm. Similarly, XRD showed that the synthesized CuNPs@NCC was of high purity. The thermal analysis showed that the CuNPs@NCC exhibited better thermal behaviors than NCC. BET surface area revealed that the N2 adsorption–desorption isotherms of CuNPs@NCC featured a type IV isotherm with an H3 hysterisis loop. This chemical method is simple, cost effective, and environmentally friendly. Compared to NCC-supported CuNPs and unsupported CuNPs, the as-prepared CuNPs@NCC exhibit a superior catalytic activity and high sustainability for the reduction of methylene blue with NaBH4 in aqueous solution at room temperature. The CuNPs@NCC achieved complete reduction of MB with completion time, rate constant and correlation coefficient (R 2) of 12 min, 0.7421 min?1 and 0.9922, respectively.  相似文献   

16.
Highly ordered large pore SBA-15 silica functionalized with up to 16% aminopropyl groups, which gave high catalytic activity and selectivity toward flavanone synthesis through aldol condensation and subsequent intramolecular Michael addition of benzaldehyde and 2'-hydroxyacetophenone, was synthesized for the first time via co-condensation of tetraethylorthosilicate (TEOS) and 3-aminopropyltriethoxysilane (APTES) using an amphiphilic block copolymer as the structure-directing agent.  相似文献   

17.
18.
Organoruthenium‐supported polyoxometalates [(RuC6H6)XW9O34]7? (XWRu; X = As, P) were selected as samples to study their catalytic activities towards the solvent‐free oxidation of n‐hexadecane. First of all, the XWRu were deposited on 3‐aminopropyltriethoxysilane‐modified SBA‐15 to prepare solid catalysts, which were characterized using powder X‐ray diffraction, nitrogen adsorption measurements, Fourier transform infrared reflectance spectroscopy and X‐ray photoelectron spectroscopy. Subsequently, their catalytic performances and stabilities were assessed through the oxidation of n‐hexadecane using air as the oxygen source without any additives and solvents, and the influences of the loading amount, catalyst amount, reaction time and reaction temperature on the catalytic activities were investigated. The results indicated the influence of the central heteroatoms X of XWRu on the catalytic activities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
20.
A series of Co-Ni2P/SBA-15 catalysts with various Co contents, Ni2P contents and P/Ni molar ratios were prepared by impregnating nickel nitrate, diammonium hydrogen phosphate, and then cobalt nitrate into SBA-15 support followed by temperature-programmed reduction in a H2 flow. The catalyst structure was characterized by X-ray diffraction(XRD), high resolution-transmission electron microscopy(HR-TEM)and N2adsorption-desorption techniques and their catalytic performance of the hydrodesulfurization(HDS) of dibenzothiophene(DBT) was evaluated. The effects of Co contents, Ni2 P contents and P/Ni molar ratios on the catalyst structure and HDS of DBT over the Co-Ni2P/SBA-15 catalyst were investigated. The results indicated that the mesoporous structure was mainly maintained and the nickel phosphides were well dispersed in all of the characterized catalysts. The 4Co-25Ni2P/SBA-15(P/Ni = 0.8) catalyst with the Co and Ni2 P contents of 4 wt% and25 wt%, respectively, and the P/Ni molar ratio of 0.8 showed the highest catalytic performance for HDS of DBT. Under the reaction conditions of 380?C and 3.0 MPa, the DBT conversion can reach 99.62%. The HDS of DBT proceeded mainly via the direct desulfurization(DDS)pathway with biphenyl(BP) as the dominant product on all of the catalysts and the BP selectivity was slightly enhanced after the introduction of Co promoters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号