首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that molecular vibrations induced by resonant excitation pulses can be enhanced by pulse trains, compared to Fourier-limited pulses of equal pulse energy. As a proof-of-principle, a low frequency mode of Nile Blue at 600 cm(-1) is observed and amplified in a pump and probe experiment. In addition to previous experiments in our group, an increased population transfer to the excited electronic state is identified as an important element of the underlying physical mechanism. These results suggest an enhancement on the level of individual molecules rather than a macroscopic effect.  相似文献   

2.
3.
Low-frequency surface vibrations were observed on a rutile TiO(2)(110) surface covered with trimethyl acetate (TMA) by using fourth-order Raman spectroscopy. The TMA-covered surface interfaced to air was irradiated with 18-fs light at a wavelength of 630 nm. A pump pulse excited vibrational coherence of Raman-active modes and a probe pulse interacts with the coherently excited surface to generate second harmonic light (315 nm), the intensity of which oscillated as a function of the pump-probe delay. Four bands were recognized at 180, 357, 444, and 826 cm(-1) in the Fourier transformation spectrum of the oscillation and assigned to bulk phonons modified by the presence of the surface boundary condition. The Raman transition for the pump was nonresonant to the band gap excitation of TiO(2), as evidenced by the oscillation phase relative to the pump irradiation and by the oscillation amplitude as a function of the pump power. The observable range of this surface-selective spectroscopy is extended to wide-band gap materials on which one-photon resonance enhancement of the Raman-pump efficiency cannot be expected.  相似文献   

4.
We introduce an optical pump/probe method that allows selective measurement of ground-state rotational dynamics of solutes in liquids. It relies on employing two successive pump pulses that are adjusted to create an optical anisotropy due to the orientational distribution of only the ground-state solute molecules. Measurement on a dye-solvent system shows a large difference between the rotational diffusion rates of the ground state and the excited state of the dye molecules due to different solute-solvent interactions.  相似文献   

5.
Closed loop automated pulse shaping experiments are conducted to investigate population transfer in solutions of the laser dye LDS750 in acetonitrile and ethanol. Guided by a genetic algorithm, the optical phases of broadband noncollinear parametric amplifier pulses are modulated by a micromachined deformable mirror to minimize sample fluorescence. The objectives were to test if nonlinearly chirped pulses could reduce population transfer below levels attained by their linearly chirped analogues, and if so, whether the resulting pulse shapes could be rationalized in terms of the photoinduced molecular dynamics. We further aimed to discover how the optimal solutions depend on the pulse fluence, and on the nature of the solvent. Using frequency resolved optical gating, the optimal field is shown to consist of a transform limited blue portion, which promotes population to the excited state, and a negatively chirped red tail, which follows the Stokes shifting of the excited density and dumps it back down to the ground state through stimulated emission. This is verified by comparing the optimal group delay dispersion with multichannel transient absorption data collected in acetonitrile. The optimal pulse shape was not significantly affected by variation of pulse fluence or by the change of solvent for the two polar liquids investigated. These results are discussed in terms of accumulated insights concerning the photophysics of LDS750 and the capabilities of our learning feedback scheme for quantum control.  相似文献   

6.
The linear and nonlinear optical properties of the heteroaromatic push-pull-push two-photon absorbing dye N-methyl-2,5-bis[1-(N-methylpyrid-4-yl)ethen-2-yl]-pyrrole ditriflate (PEPEP) are reported. The determination of the two-photon absorption (TPA) cross-section spectrum has been performed with different techniques: femtosecond TPA-white light continuum probe experiments, two-photon-induced fluorescence, and open aperture Z-scan measurements using both nanosecond and femtosecond laser pulses. The measured TPA cross sections and their wavelength dispersion show a marked dependence on the parameters of the laser pulses and on the measurement technique employed. These properties are discussed in terms of the different microscopic mechanisms that can contribute to the multiphoton absorption processes, with different weight depending on the measurement conditions and on the photophysical parameters of the dye.  相似文献   

7.
本文报道了具有时间分辨能力的全频宽带受激拉曼(BBSRS)系统和关于异硫氰基孔雀石绿(MGITC)受激拉曼光谱(sRs)的研究.BBSRS系统的探测光为450-800nm宽带连续白光,泵浦光为280~900nm范围内连续可调谐的ps窄带可见光(带宽≈7.5cm-1,脉宽≈2.5ps).在合适的泵浦波长下,该系统可同时获取拉曼损失和拉曼增益光谱.MGITC的SRS研究结果表明,当拉曼损失谱峰出现在最大吸收波长(≈627nm)时,共振SRS谱峰强度最大;当泵浦或增益谱峰在最大吸收波长附近时,未观察到明显的共振拉曼信号;共振峰强度随浓度增大而增大,随泵浦功率增大而迅速增大,后趋于饱和;共振和非共振峰强在延时零点附近达到最大值,并随延时绝对值的增大而减小.  相似文献   

8.
The authors propose a new approach to vibration spectroscopy based on the coherent anti-Stokes Raman scattering of broadband ultrashort laser pulses. The proposed method reveals both the amplitude and the phase of molecular vibrations by utilizing the cross-correlation frequency resolved optical gating (XFROG) technique. The spectrum of the anti-Stokes pulse is measured as a function of the time delay between the laser-induced molecular vibrations and a well characterized broadband femtosecond probe pulse. The iterative XFROG algorithm provides a simultaneous complete characterization of molecular vibrations both in frequency and time domains with high resolution. They demonstrate experimentally the feasibility of the proposed method and show one of its potential applications in disentangling the time behavior of a mixture of vibrationally excited molecules. The technique of femtosecond pulse shaping is used for further improvement of accuracy and stability against noise.  相似文献   

9.
The lasing photostability of the red perylimide dye (RPD) in various solid matrices was measured under frequency-doubled Nd:YAG laser excitation. The RPD: composite glass laser intensity decayed to 50% of its initial value after approximately 20,000 pump pulses of 13 mJ/pulse. The output of RPD:ormosil glass and RPD:PMMA glass lasers decayed to 50% of their initial value after 1,200 and 1,000 pump pulses of the same energy, respectively. For rhodamine-6G:silica-gel and rhodamine-6G:ormosil glass lasers, the 50% decay occurred already after 1,000 and 300 pulses, respectively. The decay was non-exponential, suggesting that the dye bleaching was not a single-photon process. The average laser output decay rates increased linearly with the pump energy. Singlet-singlet excited state absorption of the RPD dye in the solid matrices was also measured between 550 and 730 nm. At ~600 nm the cross section was ~2×10?16 cm2/molecule. The excited-state absorption competes with the lasing, and is a main factor that limits the laser efficiency.  相似文献   

10.
The development of a time-resolved coherent anti-Stokes Raman scattering (CARS) variant for use as a probe of excited electronic state Raman-active modes following excitation with an ultrafast pump pulse is detailed. Application of this technique involves a combination of broadband fs-time scale pulses and a narrowband pulse of ps duration that allows multiplexed detection of the CARS signal, permitting direct observation of molecular Raman frequencies and intensities with time resolution dictated by the broadband pulses. Thus, this nonlinear optical probe, designated fs/ps CARS, is suitable for observation of Raman spectral evolution following excitation with a pump pulse. Because of the spatial separation of the CARS output signal relative to the three input beams inherent in a folded BOXCARS arrangement, this technique is particularly amenable to probing low-frequency vibrational modes, which play a significant role in accepting vibrational energy during intramolecular vibrational energy redistribution within electronically excited states. Additionally, this spatial separation allows discrimination against strong fluorescence signal, as demonstrated in the case of rhodamine 6G.  相似文献   

11.
Charge separation in excited states upon visible light absorption is a central process in photovoltaic solar cell applications. Employing state-of-the-art first principles calculations based on time-dependent density functional theory (TDDFT), we simulate electron-hole dynamics in real time and illustrate the microscopic mechanism of charge separation at the interface between organic dye molecules and oxide semiconductor surfaces in dye-sensitized solar cells. We found that electron-hole separation proceeds non-adiabatically on an ultrafast timescale <100 fs at an anthocyanin/TiO(2) interface, and it is strongly mediated by the vibrations of interface Ti-O bonds, which anchor the dye onto the TiO(2) surface. The obtained absorption spectrum and electron injection timescale agree with experimental measurements.  相似文献   

12.
Here we demonstrate that pump-probe experiments can be carried out on microsecond to millisecond timescales using an electrostatic ion storage ring. As a test case, we have chosen protoporhyrin IX anions that have lifetimes with respect to dissociation after photoexcitation on this time scale. Ions were photoexcited on one side of the ring with either 430- or 535-nm light (pump) and then allowed to take a certain number of revolutions before they were photoexcited by a second laser pulse (probe) with wavelengths between 650 and 950 ran. If ions were first excited by the pump, an increased yield of neutral products caused by the absorption of red light was measured in a microchannel plate detector located on the other side of the ring. This implies that it is possible to pick out ions that were photoexcited by the pump pulse and to spectroscopically characterize these ions. We report absorption spectra of 535 ran photoexcited porphyrin anions, with time delays of 0.19 and 0.57 ms between the pump and probe pulses, and find that absorption occurs over a broad region in the red.  相似文献   

13.
Resonant pump polarizability response spectroscopy (RP-PORS) was used to study the isotropic and anisotropic solvent structural relaxation in solvation. RP-PORS is the optical heterodyne detected transient grating (OHD-TG) spectroscopy with an additional resonant pump pulse. A resonant pump excites the solute-solvent system and the subsequent relaxation of the solute-solvent system is monitored by the OHD-TG spectroscopy. This experimental method allows measuring the dispersive and absorptive parts of the signal as well as fully controlling the beam polarizations of incident pulses and signal. The experimental details of RP-PORS were described. By performing RP-PORS with Coumarin 153(C153) in CH(3)CN and CHCl(3), we have successfully measured the isotropic and anisotropic solvation polarizability spectra following electronic excitation of C153. The isotropic solvation polarizability responses result from the isotropic solvent structural relaxation of the solvent around the solute whereas the anisotropic solvation polarizability responses come from the anisotropic translational relaxation and orientational relaxation. The solvation polarizability responses were found to be solvent-specific. The intramolecular vibrations of CHCl(3) were also found to be coupled to the electronic excitation of C153.  相似文献   

14.
15.
Femtosecond stimulated Raman scattering (FSRS) spectroscopy is a powerful pump–probe technique that can track electronic and vibrational dynamics with high spectral and temporal resolution. The investigation of extremely short‐lived species, however, implies deciphering complex signals and is ultimately hampered by unwanted nonlinear effects once the time resolution limit is approached and the pulses overlap temporally. Using the loop diagrams formalism we calculate the fifth‐order response of a model system and address the limiting case where the relevant dynamics timescale is comparable to the pump–pulse duration and, consequently, the pump and the probe overlap temporally. We find that in this regime, additional diagrams that do not contribute for temporally well separated pulses need to be taken into account, giving rise to new time‐dependent features, even in the absence of photoinduced dynamics and for negative delays.  相似文献   

16.
We demonstrate a single-beam coherent anti-Stokes Raman scattering (CARS) technique for gas-phase thermometry that assesses the species-specific local gas temperature by single-shot time-to-frequency mapping of Raman-coherence dephasing. The proof-of-principle experiments are performed with air in a temperature-controlled gas cell. Impulsive excitation of molecular vibrations by an ultrashort pump/Stokes pulse is followed by multipulse probing of the 2330 cm(-1) Raman transition of N(2). This sequence of colored probe pulses, delayed in time with respect to each other and corresponding to three isolated spectral bands, imprints the coherence dephasing onto the measured CARS spectrum. For calibration purposes, the dephasing rates are recorded at various gas temperatures, and the relationship is fitted to a linear regression. The calibration data are then used to determine the gas temperature and are shown to provide better than 15 K accuracy. The described approach is insensitive to pulse energy fluctuations and can, in principle, gauge the temperature of multiple chemical species in a single laser shot, which is deemed particularly valuable for temperature profiling of reacting flows in gas-turbine combustors.  相似文献   

17.
Highly nonlinear pump fluence dependence was observed in the ultrafast one-color pump-probe responses excited by 38 fs pulses resonant with the E(22) transition in a room-temperature solution of (6,5) carbon nanotubes. The differential probe transmission (ΔT/T) at the peak of the pump-probe response (τ = 20 fs) was measured for pump fluences from ~10(13) to 10(17) photons/pulse cm(2). The onset of saturation is observed at ~2 × 10(15) photons/pulse cm(2) (~8 × 10(5) excitons/cm). At pump fluences >4 × 10(16) photons/pulse cm(2) (~1.6 × 10(6) excitons/cm), ΔT/T decreases as the pump fluence increases. Analogous signal saturation behavior was observed for all measured probe delays. Despite the high exciton density at saturation, no change in the E(22) population decay rate was observed at short times (<300 fs). The pump probe signal was modeled by a third-order perturbation theory treatment that includes the effects of inhomogeneous broadening. The observed ΔT/T signal is well-fit by a pump-fluence-dependent dephasing rate linearly dependent on the number of excitons created by the pump pulse. Therefore, the observed nonlinear pump intensity dependence is attributed to the effects of quasi-elastic exciton-exciton interactions on the dephasing rates of single carbon nanotubes. The low fluence total dephasing time is 36 fs, corresponding to a homogeneous width of 36 meV (290 cm(-1)), and the derived E(22) inhomogeneous width is 68 meV (545 cm(-1)). These results are contrasted with photon-echo-derived parameters for the E(11) transition.  相似文献   

18.
We characterize in detail a recently introduced technique in which perpendicularly polarized pulses with controllable intensities and timing are used for the excitation step in optical Kerr effect spectroscopy. We examine the ratio of pump pulse intensities required to cancel the contribution of reorientational diffusion or of a Raman-active intramolecular vibration to the signal as a function of the delay time between excitation pulses. These results indicate that the signal can be described well as arising from the sum of independent third-order responses initiated by each pump pulse. This conclusion is further supported by using data obtained with a single pump pulse to model decays obtained with two pump pulses.  相似文献   

19.
Supercontinuum (SC) with photonic crystal fiber (PCF) is a new technique of pulsed white light generation. The pump beam and the white probe light are necessary for pump–probe pulse radiolysis. The improvement of pulse radiolysis system can be expected by using PCF based SC as probe light. The source size of white light that depends on core size of PCF will be improved. Nanosecond time resolution pulse radiolysis with SC probe was successfully conducted about pure water sample. The absorption decay and spectrum of hydrated electron was obtained. As SC is a short pulse, it would be applicable for picosecond time resolution pulse radiolysis based on the stroboscopic method.  相似文献   

20.
Abstract— Sparrows ( Passer domesticus ) are day-active birds which exhibit circadian rhythms of perch-hopping activity. The phases of sparrow's circadian rhythms were studied following single 4 h light pulses, single 4 h dark pulses, doublet treatments of light and dark pulses, and a 10 h light pulse.
The sparrows exhibited a phase response curve to 4 h light pulses with maximum phase advances (3.8 h) at CT20 and maximum phase delays(–1.3 h) at CT16. The sparrows also displayed a phase response curve to dark pulses with maximum phase advances (2.2 h) at CT16 and maximum phase delays at CTO(–0.7 h).
The remaining pulses were imposed during the subjective dark-time. The 10 h pulse beginning 1 h after lights-out produced a 2.2 h phase shift. The doublet of 2 h pulses that were the "skeleton" of the 10 h pulse produced a 2.5 h phase shift. The early 2 h pulse, applied by itself resulted in a -0.4 h delay; the late 2 h pulse applied singly produced a 3.1 h advance. When an early 3 h dark pulse was imposed together with a late light pulse, the phase was advanced 3.6 h; singly the pulses produced 1.8 h and 2.7 h advances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号