首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Designing new functional materials with increasingly complex compositions is of current interest in science and technology. Complex rare‐earth‐based chalcogenides have specific thermal, electrical, magnetic and optical properties. Tetragadolinium bis[tetraoxidosilicate(IV)] oxide telluride, Gd4(SiO4)2OTe, was obtained accidentally while studying the Gd2Te3–Cu2Te system. The crystal structure was determined by means of single‐crystal X‐ray diffraction. The compound crystallizes in the space group Pnma. Three symmetry‐independent gadolinium sites were determined. The excitation and emission spectra were collected at room temperature and at 10 K. Gd4(SiO4)2OTe appears to be a promising optical material when doped with rare‐earth ions.  相似文献   

2.
Thermal annealing of Sm+3 or Er+3 doped Na2O/K2O/BaF2/BaO/Al2O3/SiO2 glasses led to the precipitation of nanocrystalline BaF2. The mean crystallite sizes were in the range from 9 to 15 nm as shown by XRD line broadening. Whereas glasses without rare earth oxides showed crystallites homogenously dispersed in the amorphous matrix, those doped with 0.05 mol% ErF3 or SmF3 showed highly agglomerated crystals. The latter was due to droplet phase separation in the rare earth doped glasses as proved by transmission electron microscopy while in the undoped glasses phase separation did not occur. Furthermore, the size of the droplets depended on the BaO-concentration. Fluorescence emission spectra of a samarium doped sample showed higher intensities than in the glasses they were prepared from.  相似文献   

3.
Recently nanocomposites with sensoring function are becoming a new area of interest in the field of optical gas sensor. In fact, the optical transmittance of nano-particles or thin films has been reported to be changed by atmosphere gases. In particular it was found that NiO, Co3O4 and Mn3O4 thin films showed reversible decrease in the Vis-NIR absorption due to CO.Aim of this work is the synthesis and the characterization of SiO2 sol-gel glass films doped with NiO nanocrystals.Films of composition (100 – X)SiO2-XNiO with X = 10, 20, 40, were obtained by mixing a matrix solution of Si(OC2H5)4 (TEOS) and CH3Si(OC2H5)3 (MTES) as SiO2 precursors, with a doping solution containing NiCl2 as precursor for NiO particles.3-Aminopropyltriethoxysilane (3-APTES), bearing either an ammine group capable of coordinating the Ni ions and hydrolysable siloxane groups for anchoring the metal complex moiety to the silicate matrix, was used as bifunctional ligand.Transmission electron microscopy micrographs showed a uniform distribution of round shaped nanoparticles in film heated at 500°C with a mean diameter of 2.5 nm.The film composition evaluated from Rutherford backscattering spectrometry was in good agreement with the nominal one. As expected the density of the films heated at 1000°C is much higher than the density of the film heated at 500°C due to a residual porosity. Fourier transform infrared spectra also confirmed the presence of residual porosity in the films heated at 500°C.  相似文献   

4.
We investigated the lasing properties of optically pumped polymer films. Amplified spontaneous emission (ASE) around 400 nm was observed in polymer films of polystyrene (PS) and poly(N‐vinylcarbazole) (PVK) doped up to 20% with the hole‐transporting organic molecule N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine (TPD). Thus, TPD‐based films are candidates for blue‐emitting organic diode lasers. Films containing several semiconducting organic molecules and polymers and rare‐earth complexes were also investigated. Energy transfer was observed in PVK films doped with various europium and samarium complexes. PS films containing the electron‐transporting organic molecule 2‐(4‐biphenylyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole and small amounts of TPD also showed energy transfer to the europium complexes, but not to the samarium ones. None of these films demonstrated ASE; therefore, they are not appropriate for lasing purposes. However, because rare‐earth ions have very sharp emission spectra, these materials are candidates for very monochromatic light‐emitting diodes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2706–2714, 2003  相似文献   

5.
In this paper, parylene/SiO2 composite films were reported to protect KDP crystals, indispensable cells in ICF experiments, from moisture. FTIR, UV-NIR spectra and XPS were used to analyze the properties of films. Laser damage threshold of films was also measured. With porous silica coating on surface of parylene film, the transmittance of dual layers can be raised to more than 91%. KDP crystals with poly(p-xylylene)/SiO2 coating could work well in ambient atmosphere for more than half a year.  相似文献   

6.
Both silica glass materials singly doped with rare earth organic complex and co-doped with Al^3 were prepared by in situ sol-gel method respectively. XRD and SEM measurements were performed to verify the non-crystalline structure of the glass. The excitation spectra, emission spectra and IR spectra were measured to analyze the influence of the glass contents on the structure of the glass and the energy level of the doped Eu(IH) ions. The effect of Al^3 on the photoluminescence properties of rare earth organic complex in silica glass was investigated. The IR spectra indicated that the in situ synthesized europium complex molecule was confined to the micropores of the host and the vibration of the ligands was frozen. When Al2O3 was doped into the silica host gel, the rare earth ions in the silica network were wrapped up and dispersed by Al2O3, so the distribution of Eu(Ⅲ) complex in the host was morehomogeneous, and the luminescence intensity of ^5D0-^7F2 transition emission of the Eu^3 ions was improved. The results showed that an appropriate amount of Al^3 added to the gel glass improved the emission intensity of the complex in the silica glass, and when the content of Al2O3 reached 4 mol%, the maximum emission intensity could be obtained compared with that of other samples containing different Al2O3 contents.  相似文献   

7.
The sol–gel method combined with a spin-coating technique has been successfully applied for the preparation of rare-earth doped silica:germania films used for the fabrication of erbium-doped waveguide amplifiers (EDWA), presenting several advantages over other methods for the preparation of thin films. As with other methods, the sol–gel route also shows some drawbacks, such as cracks related to the thickness of silica films and high hydrolysis rate of certain precursors such as germanium alkoxides. This article describes the preparation and optical characterization of erbium and ytterbium co-doped SiO2:GeO2 crack-free thick films prepared by the sol–gel route combined with a spin-coating technique using a chemically stable non-aqueous germanium oxide solution as an alternative precursor. The non-crystalline films obtained are planar waveguides exhibiting a single mode at 1,550 nm with an average thickness of 3.9 μm presenting low percentages of porosity evaluated by the Lorentz–Lorenz Effective Medium Approximation, and low stress, according to the refractive index values measured in both transversal electric and magnetic polarizations. Weakly confining core layers (0.3% < Δn < 0.75%) were obtained according to the refractive index difference between the core and buffer layers, suggesting that low-loss coupling EDWA may be obtained. The life time of the erbium 4I13/2 metastable state was measured as a function of erbium concentration in different systems and based on these values it is possible to infer that the hydroxyl group was reduced and the formation of rare-earth clusters was avoided.  相似文献   

8.
A new method for deposition nitrogen‐doped TiO2 nanofibers films was proposed. By using atmospheric pressure plasma jet generated by dual‐frequency power sources, the morphologies of these TiO2 films were investigated by scanning electron microscopy. The structures of these films were characterized by X‐ray diffraction and Raman Shift Spectroscopy. The elemental composition of these films [Colour figure can be viewed at wileyonlinelibrary.com ] were characterized by means of X‐ray photoelectron spectroscopy. The optical absorption of these films were studied by UV‐vis absorbance spectra. These results indicated that the nitrogen‐doped nanofibers TiO2 films have mixed phases of anatase and rutile. They also display narrow band gap. The I‐V characteristics curves exhibited good conductivity ability. Optical emission spectroscopy (OES) was measured to analyze the active group.  相似文献   

9.
Polymers doped with rare earth complexes are advantaged in film production for many applications in the luminescent field. In this luminescent polycarbonate (PC) films doped with diaquatris(thenoyltrifluoroacetonate)europium(III) complex [Eu(TTA)3(H2O)2] were prepared and their calorimetric and luminescent properties in the solid state are reported. The thermal behavior was investigated by utilization of differential scanning calorimetry (DSC) and thermogravimetry (TG). Due of the addition of rare earth [Eu(TTA)3(H2O)2] into PC matrix, changes were observed in the thermal behavior concerning the glass transition and thermal stability. Characteristic broadened narrow bands arising from the 5D0 → 7FJ transitions (J = 4−0) of Eu3+ ion indicate the incorporation of the Eu3+ ions in the polymer. The luminescent films show enhancement emission intensity with an increase of rare earth concentration in polymeric matrix accompanied by decrease in thermal stability.  相似文献   

10.
In recent years, luminescent materials doped with Ln3+ ions have attracted much attention for their application as optical thermometers based on both downshifting and upconversion processes. This study presents research done on the development of highly sensitive optical thermometers in the physiological temperature range based on poly(methyl methacrylate) (PMMA) films doped with two series of visible Ln3+ complexes (Ln3+=Tb3+, Eu3+, and Sm3+) and SiO2 nanoparticles (NPs) coated with these PMMA films. The best performing PMMA film doped with Tb3+ and Eu3+ complexes was the PMMA[TbEuL1tppo]1 film (L1=4,4,4-trifluoro-1-phenyl-1,3-butadionate; tppo=triphenylphosphine oxide), which showed good temperature sensing of Sr=4.21 % K−1 at 313 K, whereas for the PMMA films doped with Tb3+ and Sm3+ complexes the best performing was the PMMA[TbSmL2tppo]3 film (L2=4,4,4-trifluoro-1-(4-chlorophenyl)-1,3-butadionate), with Sr=3.64 % K−1 at 313 K. Additionally, SiO2 NPs coated with the best performing films from each of the series of PMMA films (Tb–Eu and Tb–Sm) and their temperature-sensing properties were studied in water, showing excellent performance in the physiological temperature range (PMMA[TbEuL1tppo]1@SiO2: Sr=3.84 % °C at 20 °C; PMMA[TbSmL2tppo]3@SiO2: Sr=3.27 % °C at 20 °C) and the toxicity of these nanoparticles on human cells was studied, showing that they were nontoxic.  相似文献   

11.
The focus of this study was to synthesize the inherently conductive polymer polyaniline using an optimized process to prepare polyaniline/silicon dioxide (PANI/SiO2) composites by in situ polymerization and ex situ solution mixing. PANI and PANI/SiO2 composite films were prepared by drop‐by‐drop and spin coating methods. The electrical conductivities of HCl doped PANI film and PANI/SiO2 composite films were measured according to the standard four‐point‐probe technique. The composite films exhibited an increase in electrical conductivity over neat PANI. PANI and PANI/SiO2 composites were also investigated by spectroscopic methods including UV‐Vis, FT‐IR, and Photoluminescence. UV‐Vis and FT‐IR studies showed that SiO2 particles affect the quinoid units along the polymer backbone and indicate strong interactions between the SiO2 particles and the quinoidal sites of PANI (doping effect). The photoluminescence properties of PANI and PANI/SiO2 composites were studied and the PANI/SiO2 composites showed increased intensity as compared to neat PANI. The increase of conductivity of PANI/SiO2 composite may be partially due to the doping or impurity effect of SiO2 where the silicon dioxides compete with chloride ions. The morphology of particles and films were examined by a scanning electron microscope (SEM). SEM measurements indicated that the SiO2 were well dispersed and isolated in composite films. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The systematic modifications of silica matrix as a function of modified Ti-alkoxide contents (Au nanocrystals doped TiO2/SiO2 mixed oxide thin films) have been investigated by the sol-gel process. A structural analysis on the various steps of the hydrolysis-condensation process as well as solid powder is determined by IR, UV-Visible, and 29Si NMR spectroscopy. 29Si MAS spectra are characterized by broad lines for the three types of sites. Different distributions (Q 2, Q 3, and Q 4 units) observed in the TiO2/SiO2 (1 : 3) sample. Proper control of the process condition, modifying the Ti alkoxide as a less reactive precursor, improves the increase the amount of Ti–O–Si bonding in the silica network of TiO2/SiO2 mixed oxide matrices and the distribution of metal oxides. This method can be used for the preparation of homogeneous metal and metal-metal alloy nanocrystals deposition from mixed oxide thin films.  相似文献   

13.
Nitrogen doped zinc oxide (ZnO) nanoparticles have been synthesized using a colloidal route and low temperature nitridation process. Based on these results, 200 nm thick transparent ZnO thin films have been prepared by dip-coating on SiO2 substrate from a ZnO colloidal solution. Zinc peroxide (ZnO2) thin film was then obtained after the chemical conversion of a ZnO colloidal thin film by H2O2 solution. Finally, a nitrogen doped ZnO nanocrystalline thin film (ZnO:N) was obtained by ammonolysis at 250 °C. All the films have been characterized by scanning electron microscopy, X-ray diffraction, X-Ray photoelectron spectroscopy and UV–Visible transmittance spectroscopy.  相似文献   

14.
Ag nanoparticles embedded in SiO2 thin films (Ag/SiO2 films) were prepared by a multitarget sputtering method. In the optical absorption spectra of the Ag/SiO2 films, the absorption peak due to the surface plasmon resonance (SPR) of Ag particle was clearly observed at the wavelength of 394–413 nm. The imaginary part of the third-order non-linear susceptibility, Im [χ(3)], of the Ag/SiO2 film was estimated to be ?1.1×10?8 esu measured by the femtosecond Z-scan technique near the SPR peak. The response time of the film measured from the decay of the differential transmission of the pump-probe experiment was 1.3 ps at the SPR peak.  相似文献   

15.
Phosphosilicate films with 90%SiO2-10%P2O5 molar composition, derived from tetraethoxysilane as SiO2 precursor and triethylphosphate, triethylphosphite or phosphoric acid as P2O5 precursors were prepared using the sol-gel method. The films were deposited on glass and ITO coated glass supports. The influence of the type of P2O5 precursor, type of substrate and of the thermal treatment (200, 300 and 500°C) on their structure and properties was studied. By spectroellipsometric and XPS measurements the high vaporization of the phosphorous during the densification of the films by thermal treatment was noticed when alkoxide were used, underlying that the mentioned precursors are not recommended for thin phosphosilicate films preparation. The phosphoric acid that forms chemical bond with silica network during the sol-gel process lead to better incorporation of P in the silica network as compared to the P-alkoxides.  相似文献   

16.
Interfacial interactions of Nafion ionomer with superhydrophilic (Pt, Au), hydrophilic (SiO2), and hydrophobic (graphene, octyltrichlorosilane [OTS]‐modified SiO2) is investigated, using in situ thermal ellipsometry, by quantification of substrate‐ and thickness‐dependent thermal properties of the ultrathin Nafion films of nominal thickness ranging 25–135 nm. For sub‐50 nm thin Nafion films, the thermal expansion coefficient of films decreased in the order of most hydrophobic to most hydrophilic substrate: OTS > graphene > SiO2 > Au > Pt, implying weaker interpolymer and polymer–substrate interactions for films on hydrophobic substrates. Expansion coefficient of films on SiO2, graphene, and OTS‐modified SiO2 decreased with thickness whereas that of films on Au and Pt substrates increased with thickness. Above ~100 nm of thickness, films on all substrates converged toward a common value representative of bulk Nafion. Thermal transition temperature was found to be higher for films on hydrophilic SiO2 than that for films on hydrophobic graphene and OTS‐modified SiO2 but was not discernible for films on Au and Pt substrates. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 343–352  相似文献   

17.
《Solid State Sciences》2004,6(4):349-355
X2–Y2SiO5:A (A=Eu3+, Tb3+, Ce3+) phosphor films and their patterning were fabricated by a sol–gel process combined with a soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy (SEM) optical microscopy and photoluminescence (PL) were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 900 °C with X1–Y2SiO5, which transformed completely to X2–Y2SiO5 at 1250 °C. Patterned thin films with different band widths (5 μm spaced by 5 μm and 16 μm spaced by 24 μm) were obtained by a soft lithography technique (micromoulding in capillaries, MIMIC). The SEM and AFM study revealed that the nonpatterned phosphor films were uniform and crack free, and the films mainly consisted of closely packed grains with an average size of 350 nm. The doped rare earth ions (A) showed their characteristic emissions in X2–Y2SiO5 phosphor films, i.e., 5D07FJ (J=0,1,2,3,4) for Eu3+, 5D3, 47FJ (J=6,5,4,3) for Tb3+ and 5d (2D)–4f (2F2/5, 2/7) for Ce3+, respectively. The optimum doping concentrations for Eu3+, Tb3+ were determined to be 13 and 8 mol% of Y3+ in X2–Y2SiO5 films, respectively.  相似文献   

18.
The electrical properties of sol–gel-derived films can be tailored by embedding conductive particles of ruthenium dioxide or carbon black in an insulating amorphous SiO2 silica matrix. The preparation process included an acid hydrolysis of tetraethoxysilane and methyltrimethoxysilane. Then alcohol solutions of ruthenium chloride or carbon black were added. Films of filler concentration up to 60 vol.% were prepared by dip coating and then dried and heat-treated at various temperatures up to 600_°C. The D.C. resistance of the films can be varied within the range of 109 to 10–2 cm. A non-linear dependence on filler composition in the films was observed for both systems, which is explained by a modified percolation theory. A percolation threshold of 5.5 vol.% for SiO2-RuO2 or 50 vol.% for SiO2-C films, whereby the resistance drastically decreases, was determined. Moreover the temperature dependency of resistance and the current-voltage characteristics of the films can also be explained by this geometric model.  相似文献   

19.
Highly efficient UV absorption films of CeO2–SiO2 and TiO2–CeO2–SiO2 were synthesized through an epoxide assisted sol–gel strategy. As proven by their UV–vis transmittance spectra, the obtained films show very strong absorption in the UV region, at the same time, keeping the high transparency in the visible range. Due to the unique chemistry of this route and the delicate selection of Ce precursor salts, the ceria in the film can be crystallized at ambient temperature, resulting in the effective UV absorption and oxidation minimization of the films. These advantages guarantee their application in the protection of heat-sensitive organic materials.  相似文献   

20.
We have investigated the doping behavior of rare earth element holmium (Ho3+) in ZnO semiconductor. The structural, microstructure, and magnetic properties of Zn1-xHoxO (x=0.0, 0.04, and 0.05) thin films deposited on Si(100) substrate by thermal evaporation technique were studied. The ceramic targets were prepared by conventional solid state ceramic technique. The pallets used as target were final sintered at 900 oC in the presence of N2 atmosphere. The experimental results of X-ray diffraction (XRD) spectra, surface morphology, and magnetic properties show that the Ho3+ doped ZnO thin films has a strong influence on the materials properties. The higher angle shift in peak position and most preferred (101) orientation were observed in XRD pattern. These spectra confirmed the substitution of Ho3+ in ZnO lattice. The surface morphology and stoichiometry for both bulk and thin films were analyzed by scanning electron microscopy and energy dispersive spectroscopy. It was observed that grain size decreases with the increase of Ho3+. Room temperature ferromagnetism was observed for Zn0.95Ho0.05O films. The ferromagnetism might be attributed to the substitution of Ho ions for Zn2+ in ZnO lattices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号