首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We develop a novel method to determine the accessible pore volume, the accessible pore size and its distribution for pores having homogeneous surfaces but taking an arbitrary shape. The accessible pore volume is essentially the volume space that is accessible to the centre of an adsorbate molecule, while the accessible pore size is defined by the largest sphere that can be accommodated in the accessible space. The size of this sphere depends on the point in the accessible volume that we select. The accessible pore size is therefore, a local variable and this means that even a geometrically simple pore can possess many sizes. Each local accessible pore size is associated with a local accessible pore volume and the relationship between this pore volume and pore size is called the accessible pore size distribution. In this paper, we illustrate this methodology with a number of model pores ranging from simple to complex geometry and present the analytical accessible pore size distribution.  相似文献   

2.
The pore connectivity, pore size distribution and pore spatial distribution of the porous structure of native and silanized silica particles were determined by matching the experimental nitrogen sorption data with the theoretical results obtained from pore network model simulations. The agreement between theory and experiment is found to be good. The results clearly indicate that the deposition of the silane layer to the pore surfaces of the native silica particles produces a silanized silica particle with a mean pore diameter and pore connectivity smaller than that of the native silica particle. Furthermore, the evaluation of the pore diffusivity of ribonuclease under unretained conditions shows that the lower values of the pore connectivity found in the samples of silanized silica particles, when compared with the values of the pore connectivity obtained for the native silica particles, increase the diffusional mass transfer resistance within the porous structure of the silanized silica particles.  相似文献   

3.
The different presentations of the pore size distribution derived from the gas adsorption method and the mercury porosimetry are connected with some problems. This concerns especially the use of the logarithmically differential pore volume distribution. The incorrect application of this distribution to bimodal pore systems involves the danger of an apparent overemphasizing of larger pores. This effect may also occur using the incremental pore size distribution in case the experimental point spacing considerably increases towards the larger pore radii. The pore volume density distribution defined as the linear derivative of the cumulative pore volume curve with respect to the pore radius has been found the most convenient form among the various kinds of pore volume distribution presentations. It has been shown that the direct comparison between this distribution and the logarithmically differential pore volume distribution is not allowed. Nevertheless, there is a clear connection between these definitions for the pore size distribution so that they are completely equivalent.  相似文献   

4.
Hydrophilic anchoring is introduced as a promising strategy to constructively control the various interactions of synthetic pore sensors with the surrounding biphasic environment. Artificial rigid-rod beta barrels are selected as classical synthetic multifunctional pores and random-coil tetralysines are attached as hydrophilic anchors. The synthesis of this advanced pore is accomplished in 32 steps from commercially available starting materials. With regard to pore activity as such, the key impact of hydrophilic anchoring is a change from a Hill coefficient n<1 to n=4. This change confirms successful suppression of the competing self-assembly with precipitation from the aqueous phase as the origin of the accomplished increase in pore activity. The hydrophilic anchors do not interfere with the blockage of the synthetic pore sensors by anionic analytes. In the case of stoichiometric binding of blockers (K(D)=EC(50) of the pore; EC(50)=concentration needed to observe 50 % pore activity), however, the increase in pore activity achieved by hydrophilic anchoring results in improved pore blockage under high dilution conditions. Controls confirm that this increase does not occur with analytes that do not exhibit stoichiometric binding (K(D)>EC(50)). These results not only reveal stoichiometric binding as the expected origin of the sensitivity limit of synthetic pore sensors, they also provide promising solutions for this problem. The combination of hydrophilic anchoring with targeted pore formation emerges as a particularly promising strategy to further reduce effective pore concentrations. The scope and limitations of this approach are exemplified with pertinent analyte pairs that are essential for the sensing of sucrose, lactose, acetate, and glutamate with synthetic pores in samples from the supermarket.  相似文献   

5.
The different presentations of the pore size distribution derived from the gas adsorption method and the mercury porosimetry are connected with some problems. This concerns especially the use of the logarithmically differential pore volume distribution. The incorrect application of this distribution to bimodal pore systems involves the danger of an apparent overemphasizing of larger pores. This effect may also occur using the incremental pore size distribution in case the experimental point spacing considerably increases towards the larger pore radii. The pore volume density distribution defined as the linear derivative of the cumulative pore volume curve with respect to the pore radius has been found the most convenient form among the various kinds of pore volume distribution presentations. It has been shown that the direct comparison between this distribution and the logarithmically differential pore volume distribution is not allowed. Nevertheless, there is a clear connection between these definitions for the pore size distribution so that they are completely equivalent. Received: 15 May 1998 / Revised: 8 October 1998 / Accepted: 10 October 1998  相似文献   

6.
以十六烷基三甲基溴化铵(CTAB)为模板剂, 正硅酸乙酯为硅源, 在弱酸性条件下利用溶剂挥发诱导自组装(EISA)合成出具有介孔结构的二氧化硅薄膜. 通过控制EISA过程中溶剂挥发的环境, 可在1.4~3.1 nm的范围内调节介孔结构的孔径. 实验表明, 较快的溶剂挥发速率有助于较大孔径的介孔结构生成. 用该方法合成的介孔薄膜具有蠕虫状孔道结构和良好的孔径均一性. 在外观上, 该薄膜具有均匀、透明和无缺陷等特点, 可以自支撑, 并且具有一定的韧性.  相似文献   

7.
Argon adsorption (77 K) in atomistic silica nanopores of various sizes and shapes has been studied by means of grand canonical Monte Carlo simulations (GCMC). We discuss the effects of confinement (pore size), pore morphology (ellipsoidal, hexagonal, constricted pore), and surface texture (rough/smooth) on the thickness variation of the adsorbed film with pressure onto the disordered inner surface of porous materials (usually called t-plot or t-curve). We show that no confinement effect occurs when the diameter of the regular cylindrical pore is larger than 10 nm. For pores smaller than 6 nm, we find that the film thickness increases as the pore size decreases. We show that the adsorption isotherm in the rough pore can be described as the sum of an adsorbed amount similar to that found for a smooth pore (of the same radius) and a constant contribution due to atoms "trapped" in the infractuosities of the rough surface which act as a microporous texture. Simulation snapshots for Ar adsorption in hexagonal and ellipsoidal smooth pores indicate that at low pressures the gas/adsorbate interface retains memory of the pore shape and becomes cylindrical prior to the capillary condensation of the fluid in the pore. The film thickness in the hexagonal pore is close to that obtained for a cylindrical pore having a similar dimension. By contrast, we find that the film thickness for an ellipsoidal pore is always larger than that for an equivalent cylindrical pore (having the same length and volume but a circular section). We show that this effect strengthens as the pore size decreases and/or the pore asymmetry increases. Ar adsorption in a cylindrical constricted pore shows that the presence of the narrower part considerably modifies the adsorption mechanism. Finally, we report GCMC simulations of Ar adsorption (77 K) on a plane silica reference substrate for different intermolecular potentials. We discuss the effect of the interaction on the shape of the adsorption isotherm and compare our results with experiments.  相似文献   

8.
The comparison plot obtained from the nitrogen adsorption data has a similar shape to that of the curve of accumulating pore volume of a solid. The intrinsic nature of this relation is discussed. It is known that the derivatives of the accumulating pore volume with respect to the pore size are the pore size distribution (PSD) of the solid. Thus, the tangent curve of the comparison plot can display, at least qualitatively, the PSD of a solid, over a wide range of pore sizes (from approximately 1 to 50 nm) because the comparison plot is applicable to both micropores and mesopores. Quantitative pore structure information can be derived from the comparison plots by establishing a relationship between the t value and the pore size from the samples with uniform pore structure and known pore sizes, such as MCM-41 and alumina pillared clay samples. A calculation procedure to derive quantitative PSD from the comparison plots is suggested, giving reasonable results. This study proposes concise and reliable methods based on the comparison plots to derive information on pore structure in porous solids.  相似文献   

9.
Polymer scaffolds tailored for tissue engineering applications possessing the desired pore structure require reproducible fabrication techniques. Nondestructive, quantitative methods for pore characterization are required to determine the pore size and its distribution. In this study, a promising alternative to traditional pore size characterization techniques is presented. We introduce a quantitative, nondestructive and inexpensive method to determine the pore size distribution of large soft porous solids based on the on the displacement of a liquid, that spreads without limits though a porous medium, by nitrogen. The capillary pressure is measured and related to the pore sizes as well as the pore size distribution of the narrowest bottlenecks of the largest interconnected pores in a porous medium. The measured pore diameters correspond to the narrowest bottleneck of the largest pores connecting the bottom with the top surface of a given porous solid. The applicability and reproducibility of the breakthrough technique is demonstrated on two polyurethane foams, manufactured using the thermally induced phase separation (TIPS) process, with almost identical overall porosity (60-70%) but very different pore morphology. By selecting different quenching temperatures to induce polymer phase separation, the pore structure could be regulated while maintaining the overall porosity. Depending on the quenching temperature, the foams exhibited either longitudinally oriented tubular macropores interconnected with micropores or independent macropores connected to adjacent pores via openings in the pore walls. The pore size and its distribution obtained by the breakthrough test were in excellent agreement to conventional characterization techniques, such as scanning electron microscopy combined with image analysis, BET technique, and mercury intrusion porosimetry. This technique is suitable for the characterization of the micro- and macropore structure of soft porous solids intended for tissue engineering applications. The method is sensitive for the smallest bottlenecks of the largest continuous pores throughout the scaffold that contributes to fluid flow.  相似文献   

10.
We conducted over 150 ns of simulation of a protegrin-1 octamer pore in a lipid bilayer composed of palmitoyloleoyl-phosphatidylethanolamine (POPE) and palmitoyloleoyl-phosphatidylglycerol (POPG) lipids mimicking the inner membrane of a bacterial cell. The simulations improve on a model of a pore proposed from recent NMR experiments and provide a coherent understanding of the molecular mechanism of antimicrobial activity. Although lipids tilt somewhat toward the peptides, the simulated protegrin-1 pore more closely follows the barrel-stave model than the toroidal-pore model. The movement of ions is investigated through the pore. The pore selectively allows negatively charged chloride ions to pass through at an average rate of one ion every two nanoseconds. Only two events are observed of sodium ions crossing through the pore. The potential of mean force is calculated for the water and both ion types. It is determined that the chloride ions move through the pore with ease, similarly to the water molecules with the exception of a zone of restricted movement midway through the pore. In bacteria, ions moving through the pore will compromise the integrity of the transmembrane potential. Without the transmembrane potential as a countermeasure, water will readily flow inside the higher osmolality cytoplasm. We determine that the diffusivity of water through a single PG-1 pore is sufficient to cause fast cell death by osmotic lysis.  相似文献   

11.
制备高碳醇Cu-Fe系催化剂的比表面积、孔结构和孔径分布   总被引:14,自引:0,他引:14  
用ASAP-2000型物理吸附仪,研究了制备高碳醇Cu-Fe系催化剂的比表面积、孔结构、孔容积和孔径分布等.结果表明,随着焙烧温度的提高,比表面积下降;在相同的焙烧温度下,组成和沉淀过程的pH值也影响其表面积大小.催化剂的活性与反应可利用的表面积相关.根据吸附-脱附等温线,确定了催化剂的孔结构及孔径分布的变化规律.数据表明,孔径分布和孔容积对催化剂的活性至关重要,平均孔径(4V/A,根据BET)可作为衡量Cu-Fe系催化剂活性高低的一个参数.焙烧温度的选择是使催化剂具有适宜的孔径分布和较大的孔容积,因而具有较高活性的重要条件  相似文献   

12.
冉少锋  祝巍  徐懋 《高分子学报》1999,3(1):118-122
膜科学与膜技术作为新兴的材料科学分支之一,在国民经济中发挥着越来越重要的作用.近年来,高分子微孔膜的研究与应用正引起人们日益增长的关注.采用双轴拉伸方法制备的聚丙烯微孔膜同时具备了良好的力学性能和透过性能[1],克服了单轴拉伸方法各向异性的缺点,是一...  相似文献   

13.
The electrochemical properties of the pore wall of track-etched mica membranes are modified (a) by covalent binding of positively and negatively charged groups, and (b) by adsorption of cationic and amonic polyelectrolytes. The electrochemical properties of the pore wall are characterized by measurements of membrane potential, electrical conductivity and streaming potential.By these methods it is possible to change the sign of the surface charge density of the pore wall and to increase its absolute value by a factor of about 30 compared with that of the unmodified pore wall. Changes of electrochemical properties of the pore wall are desirable in studies of negative osmosis and incongruent electrolyte transport in membranes with known pore structure.  相似文献   

14.
In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided.  相似文献   

15.
Protein fouling remains a major problem in the use of microfiltration for many bioprocessing applications. Experiments were performed to evaluate the effect of membrane morphology and pore structure on protein fouling using different track-etched, isotropic, and asymmetric microfiltration membranes. Fouling of membranes with straight-through pores occurred by pore blockage caused by deposition of large protein aggregates on the membrane surface. However, the rate of blockage was a function of the membrane porosity due to the possibility of multiple pore blockage by a single protein aggregate on high porosity membranes. Membranes with interconnected pores fouled more slowly since the fluid could flow around the blocked pores through the interconnected pore structure. This behavior was quantified using model membrane systems with well-defined pore morphology constructed from track-etch and isotropic membranes in a layered series combination. These results provide important insights into the effects of membrane pore structure and morphology on protein fouling.  相似文献   

16.
应用分形理论的概念,结合压汞法测得的半焦孔隙结构数据,建立孔结构分形特征模型,考察了焦化过程中不同焦化温度、不同横向空间位置半焦孔隙结构分形特征及其变化规律。结果表明,孔径大于5μm 的孔不具有分形特征,孔径为20nm~5μm孔的孔隙结构具有分形特征,其分形维数为2.45~2.83,可以用分形维数定量表征孔隙结构;相同空间位置下,半焦孔结构分形维数低温时较高,随温度逐渐升高先减小,然后增大再减小;同一空间位置不同温度下分形维数的变化量较小(< 0.15),表明温度对半焦孔隙结构复杂程度的影响不明显;相同焦化温度下,半焦中心和边缘处的孔结构分形维数大于中间部位,表明中心位置和边缘位置处的孔隙结构要比中间位置处的复杂。  相似文献   

17.
Immunoglobulin G is an important plasma protein with many applications in therapeutics and diagnostics, which can be purified effectively by ion exchange chromatography. The ligand densities and pore properties of ion-exchange resins have significant effects on the separation behaviors of protein, however, the understandings are quite limited. In this work, with bovine immunoglobulin as the model IgG, the adsorption isotherms and adsorption kinetics were investigated systematically with series of diethylaminoethyl ion-exchange resins with different ligand densities and pore sizes. The Langmuir equation and pore diffusion model were used to fit the experimental data. The influences of ligand density and pore size on the saturated adsorption capacity, the dissociation constant and the effective diffusivity were discussed. The adsorption capacities increased with the increase of ligand density and the decrease of pore size, and an integrative parameter was proposed to describe the combined effects of ligand density and pore size. It was also found that the effective pore diffusion coefficient of the adsorption kinetics was influenced by pore sizes of resins, but was relatively independent on the ligand densities of resins. For a given protein, the ligand density and pore size should be optimized for improving the protein adsorption.  相似文献   

18.
We present an application of a recently developed dynamic mean field theory to the study of relaxation dynamics in adsorption and desorption from pore networks. The theory predicts the evolution of density distribution in the system, based on an underlying free energy functional from static mean field theory and the system evolves to equilibrium or metastable equilibrium states consistent with the static theory. The theory makes it possible to follow the evolution of the density distribution with time in response to a change in the bulk pressure or chemical potential. We compare uptake dynamics for a 2D slit pore network with that in a single slit pore. We see more rapid uptake dynamics in the pore network in some cases, due to the greater access of the pore space to the bulk. We also observe that the formation of liquid bridges can slow down the mass transfer in the pore network in certain situations.  相似文献   

19.
A porous structure is the key factor to successful chromatography separation. Agarose gel as one of the most popular porous media has been extensively used in chromatography separation. As the cooling process in the agarose gelation procedure can directly influence the pore structure, ten kinds of 4% agarose media with different cooling rates from 0.132 to 16.7°C/min were synthesized, and the pore structure was determined accurately by using low‐field NMR spectroscopy. The curves of pore structure and cooling rate can be divided into two stages with the boundary of 6°C/min. In stage I, the pore structure met a power equation with the decrease of the cooling rate, and in stage II, the process reached a plateau. Confirmatory experiments proved that, by adjusting the cooling rate, a precise control of the pore structure of agarose media can be realized, furthermore, cooling rate optimization was an effective way to control the pore size of agarose media and can further tailor the pore structure for more effective separation of different proteins.  相似文献   

20.
The characteristics of the heat of adsorption from a slit pore model of carbon are presented. This is shown to have a few key features that are always present, regardless of the pore size distribution used, as long as there is a reasonable range of pore sizes considered. The adsorption in a slit pore model is compared against the adsorption for a defected pore model. The isotherms of the defected pore model are qualitatively different from those of the slit pore and similar to those of amorphous carbon models presented in the literature. The heat of adsorption of the defected pore model is qualitatively different from the slit pore model, and its behavior falls between those of the slit pore model and the amorphous carbon models in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号