首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rotational vibrational fine structure and transition dipole moment of NO2 is measured using Doppler free saturation spectroscopy with an external grating cavity quantum cascade laser (QCL). The QCL wavelength is calibrated using a 310 cm long internally coupled Fabry–Perot interferometer. We obtain a frequency splitting of 139.68 ± 0.06 MHz (0.0047 cm−1) between the spin doublets (17) of 000 → 001 transition of NO2. The resolution of the QCL based saturation spectrometer is limited by the QCL linewidth of 3.99 MHz ( 0.00013 cm−1) deduced from the half width of the Lamb dips. The Lamb dip spectroscopy is utilized to obtain a vibrational dipole moment of 0.37 Debye for the (17) transitions.  相似文献   

2.
In this paper the mechanisms of photodegradation of poly(neopentyl isophthalate) (PNI) in laboratory (Suntest XXL+, λ > 300 nm) and outdoor conditions are compared. Changes in the chemical composition were studied with ATR-FTIR, SEC and MALDI-ToF MS. Furthermore, the results were compared with data presented in our previous paper on PNI coatings that were aged in the UVACUBE (λ > 254 nm). Two main aspects of photodegradation of PNI are addressed in the present paper: the influence of different wavelengths and the comparison of laboratory and outdoor exposure regarding the mechanism of degradation. Under short (λ > 254 nm) and long (λ > 300 nm) wavelength irradiation similar products of degradation are formed. However, the presence of short wavelength radiation dramatically accelerates the overall rate of photodegradation of PNI. UV light absorption calculations confirm this experimentally found acceleration. Exposure of PNI in laboratory and outdoor conditions, both with wavelengths λ > 300 nm resulted in similar degradation products in the initial stage of ageing.  相似文献   

3.
Thermogravimetric analyzer (TGA) has been applied to measure the kinetics of the thermal degradation of virgin polyvinylpyrrolidone (PVP) and a phase stabilized PVP–ammonium nitrate (AN) material. The PVP–AN samples have been prepared by using 20 wt.% of AN and PVP of three different molecular weights. Virgin PVP undergoes a major mass loss in the region 380–550 °C leaving a small amount of nonvolatile residue. The application of an advanced isoconversional method to the respective degradation process demonstrates that its effective activation energy increases from 70 kJ mol−1 to a plateau value at 250–300 kJ mol−1, which is independent of the molecular weight. The PVP–AN materials lose spontaneously 20% of their mass on heating above the glass transition temperature of the PVP matrix (160–180 °C). After the escape of AN, the remaining PVP matrix degrades in the same temperature region as virgin PVP, however, the effective activation energy of this degradation is 150–200 kJ mol−1.  相似文献   

4.
This study demonstrates the fabrication of a stable superhydrophobic surface with low contact angle hysteresis (CAH) using an arrangement of nanoscale TiO2 spheres. The control of precursor quantity is selected as the key factor in determining surface roughness that significantly intensifies water contact angle (CA) of TiO2 films. After surface fluorination treatment, the anatase-type crystalline surfaces exhibit good water repellency (CA 166.1°), low CAH (6°), and superhydrophobic stability (>60 min). Enhanced water repellency is attributed to the fact that the higher density of TiO2 spheres results in more tortuous three-phase contact line, leading to the self-cleaning effect. Such a unique textured surface imparts many promising potentials for engineering and the development of optics devices with robust superhydrophobic materials.  相似文献   

5.
Snow-ball flower like Ni nanoparticles have been synthesized using negatively charged micelles. Negatively charged micelles incorporate the Ni+2 onto its head group by electrostatic attraction and again a surfactant layer is arranged on positively charged Ni and thus in a repetitive way layer-by-layer a snow-ball flower like structure is formed. After reduction of Ni+2 to Ni atom by sodium borohydride and hydrated hydrazine the Ni clusters (3 nm) are formed and confined in micelles in snow-ball flower like pattern. The sizes of these nanoflowers are of 30 nm order. The particles are superparamagnetic in nature with blocking temperature about 117 K.  相似文献   

6.
X-ray diffraction study of supercooled water has been performed using an imaging-plate X-ray detector down to −15 °C. The peak at 10.8 Å, which grows with decreasing temperature, in the radial distribution function {D(r) − 4πr2ρ0} indicates the existence of clathrate-like structures in supercooled water. It is suggested that anomalous properties of water, which become more pronounced at low temperatures, are closely linked to the development of clathrate-like structures in water at low temperatures.  相似文献   

7.
Polyaniline was deposited potentiodynamically on a stainless steel substrate in the presence of an inorganic acids (sulfuric acid). The electrochemical characterization of the electrode was carried out by means of cyclic voltammetry and electrochemical impedance spectroscopy in the organic acids (p-toluene sulfonic acid) solution. The results show that polyaniline has a high specific capacitance of 431.8 F g−1 at 1 mV s−1, high coulombic efficiency of 95.6% at 20 mV s−1, and exhibits a high reversibility. This indicates the promising feasibility of the polyaniline used as an electrochemical capacitor material in the electrolyte of p-toluene sulfonic acid solution especially at high charge–discharge process.  相似文献   

8.
Microphase separation within hydrated Nafion® membranes was simulated using Dissipative Particle Dynamics (DPD). Morphologies were obtained at branching densities corresponding with equivalent weights ranging from 800 to 1400 (g/mole SO3) and water percentage volume contents ([H2O]) varying between 10% and 30%. All cases showed pronounced microphase separation involving a hydrophobic Teflon phase and a hydrophilic phase in which water is associated with SO3 groups that are located near the phase boundaries. Pore morphologies were found to depend strongly on water content and branching density. The average pore radius (Rpore) and the distance between the pores (Dcl-cl) were found to increase with water content obeying the relations Rpore = 1.3 + α[H2O] (nm), and Dcl-cl = 3.2 + β[H2O] (nm). The values of the expansion coefficients α and β decrease linearly with branching density with α = 5.3 × 10−5 × (EW-450) and β = 1.3 × 10−4 × (EW-450) nm/vol%. For decreasing branching density the pores obtain a more spherical character. The consequence of this on water diffusion is estimated by employing Monte Carlo trajectory calculations in which we assume that water movement is confined within the hydrophilic phase and local water mobility to be equal to that of pure water. The estimated diffusion constants increase linearly with branching density (i.e. linear decrease with equivalent weight). Experimental water diffusion constants obtained from literature for Nafion1100 membrane are in good agreement with our calculations. A counterintuitive picture evolves in which smaller pores lead to enhanced water diffusion.  相似文献   

9.
Application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) as a method for identification of arsenic in a single hair strand was investigated. Using a single point ablation method detectability of 75As and other two elements (208Pb and 64Zn) were evaluated. Arsenic (75As) signal is improved with enhanced laser ablation conditions. For the arsenic determination in hair single spots or single linear scans with enhanced laser ablation conditions described in the paper are satisfactory although  800 μm linear scans may be preferable. Arsenic levels in a single strand of hair from individuals who were chronically exposed to arsenic contaminated drinking water from a village in the Atacama Desert in northern Chile were determined by LA-ICP-MS. These results were satisfactorily correlated with total As concentration previously measured by hydride generation (HG)-ICP-MS. The sample throughput is high and it takes  3 min per each hair sample including mounting, focusing and analysis. LA-ICP-MS method can be used for the rapid identification and screening of toxic and nutritionally important elements in hair.  相似文献   

10.
An ultrafast flash thermal conductance apparatus is used to study heat flow through aliphatic and aromatic molecules arranged in self-assembled monolayers (SAMs). The apparatus consists of a thin metal film which can be flash-heated by many hundreds of degrees in 1 ps using a femtosecond pulse. Heat flow from the metal surface into the SAM molecules is detected using vibrational sum-frequency generation (SFG) spectroscopy. The SAMs studied were alkanethiolates (AT) ranging from C6 to C24, benzenethiolate (BT) and benzylmercaptide (BMT). SFG in the CH-stretch region selectively probes transitions of the terminal methyl groups of AT and the CH moiety at the 4-position of the phenyl ring of BT and BMT (opposite the thiolate-surface bond). The SFG signal is sensitive to temperature-jump induced thermal disorder of the SAM and also to vibrational frequency shifts induced by the changing intramolecular vibrational populations. The SFG probe functions as a thermometer, and this thermometer is 1.5 Å thick with a response time of 1 ps. In the AT chains, a study of the length dependence is used to determine the rate heat flows across the metal–SAM interface and the rate of heat flow through the AT chains. The interface thermal conductance is 220 GW m−2 s−1. The AT molecular conductance is 50 pW K−1 or 0.3 eV s−1 K−1. Heat flow through the AT chains is ballistic with a velocity of 1 km/s. Heat flow into BMT is slower than in BT because BMT has one additional methylene linker group. The BT and BMT structures evidence a thermally-initiated surface rearrangement occurring in a few tens of picoseconds. These SAMs are strained and the phenyl rings cannot adopt the most stable staggered herringbone structure. After the T-jump, the SAM molecules have enough freedom to relax into more favorable configurations.  相似文献   

11.
Nonionic sucrose ester microemulsions composed of sucrose laurate (SL), propylene glycol (PG) and water were prepared with the essential oil of Melaleuca alternifolia, commonly known as tea tree oil (TTO), as oil phase to investigate the phase behavior, microstructure, and antiradical activity. The pseudo-ternary phase diagrams were constructed to elucidate the phase behavior of the microemulsion formations at different weight ratios of surfactant and cosurfactant (Sm = SL/PG) of 1:1, 2:1, and 3:1. The extension of the microemulsion zone was found to be strongly dependent on the Sm ratios. The single phase microemulsion domain, especially o/w microemulsion region increased when Sm ratio is increased from 1:1 to 3:1 and no liquid crystalline structure was observed for all formulations studied. Microstructural aspects were studied by electrical conductivity and pulsed gradient spin echo (PGSE) NMR measurements along water titration line L28 (Ro = 2:8). The results from these combined techniques were in good agreement in regard to the microstructure transition points. The microstructural inversion of w/o to bicontinuous microemulsions occurred at 30 wt.% water while the transition from bicontinuous to o/w structure occurred at 55 wt.% water. The physical stability on storage temperature and time was examined by dynamic light scattering after the centrifuge test and freeze–thaw cycles. The droplet size was kept almost the same without any phase separation, providing less temperature-sensitivity up to 70 °C and good stability for 3 months at room temperature. The chemical profile and radical scavenging activity of TTO in o/w microemulsions was evaluated by means of gas chromatography–mass spectroscopy (GC–MS) and 2,2′-diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method, respectively. The major abundant constituents of crude TTO, monoterpene alcohols (terpinen-4-ol (41.65%), α-terpineol (3.18%)) and hydrocarbons (γ-terpinene (22.95%), α-terpinene (10.16%)) were identified and the composition percentage of each constituent was calculated form the GC peak areas by normalization method. The DPPH scavenging activity of TTO microemulsion was lower than pure TTO because the SL surfactant may obstruct the interaction between the TTO and DPPH, reducing the number of effective collisions.  相似文献   

12.
Hydrogen peroxide (H2O2) is an important industrial chemical, but its current production methods are highly energy-intensive. This study presents a novel process for the production of H2O2 based on the bioelectrochemical oxidation of wastewater organics at an anode coupled to the cathodic reduction of oxygen to H2O2. At an applied voltage of 0.5 V, this system was capable of producing 1.9 ± 0.2 kg H2O2/m3/day from acetate at an overall efficiency of 83.1 ± 4.8%. As most of the required energy was derived from the acetate, the system had a low energy requirement of 0.93 kWh/kg H2O2.  相似文献   

13.
A bacterial strain was isolated and cultured from the oil excavation areas in tropical zone in southern Iran. It was affiliated with Pseudomonas. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, MR01, was identical to those of cultured representatives of the species Pseudomonas aeruginosa. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties. Compositional analysis revealed that the extracted biosurfactant was composed of high percentages lipid (65%, w/w) and carbohydrate (30%, w/w) in addition to a minor fraction of protein (4%, w/w). The best production of 2.1 g/l was obtained when the cells were grown on minimal salt medium containing 1.2% (w/v) glucose and 0.1% (w/v) ammonium sulfate supplemented with 0.1% (w/v) isoleucine at 37 °C and 180 rpm after 2 days. The optimum biosurfactant production pH value was found to be 8.0. The MR01 could reduce surface tension to 28 mN/m and emulsified hexadecane up to E24  70. The results obtained from time course study indicated that the surface tension reduction and emulsification potential was increased in the same way to cell growth. However, maximum biosurfactant production occurred and established in the stationary growth phase (after 84 h). Fourier Transform Infrared spectrum of extracted biosurfactant indicates the presence of carboxyl, amine, hydroxyl and methoxyl functional groups. Thermogram of biosurfactant demonstrated three sharp endothermic peaks placing between 200 and 280 °C. The core holder flooding experiments demonstrated that the oil recovery efficiencies varied from 23.7% to 27.1% of residual oil.  相似文献   

14.
The interaction of amphiphilic cationic porphyrins, containing different patterns of meso-substitution by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl (A) and 4-(trifluoromethyl)phenyl (B) groups, with guanosine 5′-monophosphate (GMP) and calf thymus DNA have been studied by optical methods in phosphate buffer solution. The properties of these synthetic porphyrins were compared with those of representative standard of anionic 5,10,15,20-tetra(4-sulphonatophenyl)porphyrin (TPPS44−) and cationic 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin (TMAP4+). Stable complexes with GMP were found for cationic porphyrins, except for monocationic AB3+. The binding constant (KGMP  104 M−1) follows the order: A3B3+  ABAB2+ > A44+  TMAP4+. Also, interaction with DNA was observed for all evaluated cationic porphyrins. For these related cationic porphyrins, the binding constant (KDNA  105 M−1) increases with the number of cationic charges. On the other hand, the photodynamic activity of porphyrins was analyzed in solution of GMP and DNA. Monocationic AB3+ is a less effective sensitizer to oxidize GMP in comparison with the other cationic porphyrins, in agreement with the lack of detected interaction with this nucleotide. The electrophoretic analysis of DNA indicates that photocleavage takes place when the samples are exposed to photoexcited tricationic and tetracationic porphyrins. In the presence of sodium azide the DNA decomposition was diminished. Also, reduction in the DNA photocleavage was observed under anoxic condition, indicating that oxygen is essential for DNA photocleavage sensitized by these cationic porphyrins. In addition, an increase in DNA degradation was not observed in deuteriated water. Therefore, an important contribution of type I photoreaction processes could be occurring in the DNA photodamage sensitized by these cationic porphyrins. These results provide a better understanding of the characteristics needed for sensitizers to produce efficient DNA photocleavage.  相似文献   

15.
Solvent effect on the νc frequency of CH stretching vibration of the blue shifted F3CH…FCD3 complex has been studied in liquefied N2, CO, Ar, Kr and Xe. In the case of Xe, the spectroscopic measurements have also been extended to the solid state. It was found that the νc position of the complex in the solutions studied lowers with respect to the value in the gas phase. In liquid Xe, characterized by the largest permittivity, this effect reaches its maximum value of −14.5 cm−1. The νc frequency begins to grow again just below the freezing point of Xe, where a noticeable (15%) increase of the density of Xe occurs. The experimental results obtained for the liquid phase have been analyzed in the framework of the Onsager-like reaction field model and Polarizable Continuum Model (PCM) implemented into a standard Gaussian 98 Program.  相似文献   

16.
A planar-type amperometric dual microsensor was developed for the simultaneous measurement of the nitric oxide (NO) and oxygen (O2) concentrations. The sensor (overall diameter = 500 μm) consisted of a dual working electrode (WE) containing two platinized platinum microdisks (25 μm diameter, WE1, WE2, distance between two disks > 330 μm) and a Ag/AgCl wire reference electrode covered with an expanded poly(tetrafluoroethylene) gas-permeable membrane. The differentiation and concurrent measurements of NO and O2 were obtained successfully using two sensing WEs with different applied potentials (+0.75 V for WE1 and −0.4 V for WE2). Cross-talk between WE1 and WE2 was eliminated with an optimized internal solution composition. Linear dynamic range, selectivity, sensitivity, detection limit (<5 nM for NO; <500 nM for O2), and stability (>50 h) were evaluated.  相似文献   

17.
Previously unreported bis(oxalato)borate (BOB) ionic liquids (ILs) containing imidazolium, pyridinium, and pyrrolidinium cations were prepared from the corresponding halide salts by reaction with sodium bis(oxalato)borate (NaBOB), and their properties are reported. Pulse radiolysis experiments revealed that the BOB anion scavenges solvated electrons with rate constants of 3×108 M−1 s−1 in the ionic liquid C4mpyrr NTf2 and 2.8×107 M−1 s−1 in water. This reactivity indicates that BOB ILs may be too sensitive to be used as neat solvents for nuclear separations processes in high radiation fields but may still be useful for preventing criticality while processing relatively “cold” fissile actinides.  相似文献   

18.
Indium tin oxide (ITO) nanopowder was added to a polymer film containing WO3 · H2O particles to enhance electron conductivity and complimentary Li ion kinetics in an electrochromic device. Film conductivity increased dramatically with ITO content, suggesting the formation of conductive ITO networks in the film. The improved electron conductivity leads to a substantial increase of the effective Li+ ion diffusion coefficient in the composite film, from 10−11 to 10−9 cm2/s. Electrochromic contrast studies revealed that the presence of the ITO networks leads to enhanced blue/green color contrast.  相似文献   

19.
A Pb(Zr,Ti)O3 precursor gel made from a sol prepared using 1,1,1,-tris(hydroxymethyl)ethane, lead acetate and zirconium and titanium propoxides, stabilised with acetylacetone, was analysed using TGA–FTIR analysis. Decomposition under nitrogen (N2) gave rise to evolved gas absorbance peaks at 215 °C, 279 °C, 300 °C and 386 °C, but organic vapours continued to be evolved, along with CO2 and CO until 950 °C. The final TGA step in N2 is thought to relate to decomposition of an intermediate carbonate phase and the final elimination of residues of triol or acetylacetonate species which form part of the polymeric gel structure. By contrast, heating in air promoted oxidative pyrolysis of the final organic groups at ≤450 °C. In air, an intermediate carbonate phase was decomposed by heating at 550 °C, allowing Pb(Zr,Ti)O3 to be produced some 400 °C below the equivalent N2 decomposition temperature.  相似文献   

20.
PTR-MS is becoming a common method for the analysis of volatile organic compounds (VOCs) in human breath. Breath gas contains substantial and, particularly for bag samples, highly variable concentrations of water vapour (up to 6.3%) and carbon dioxide (up to 6.5%). The goal of this study was to investigate the effects of carbon dioxide on PTR-MS measurements; such effects can be expected in view of the already well known effects of water vapour. Carbon dioxide caused an increase of the pressure in the PTR-MS drift tube (1% increase for 5% CO2), and this effect was used to assess the CO2 concentration of breath gas samples along the way with the analysis of VOCs. Carbon dioxide enhanced the concentration ratio of protonated water clusters (H3O+H2O) to protonated water (H3O+) in the drift tube. Using the observed increase, being 60% for 5% CO2, it is estimated that the mobility of water cluster ions in pure CO2 is almost 65% lower than in air. Carbon dioxide had a significant effect on the mass spectra of the main breath gas components methanol, ethanol, 1-propanol, 2-propanol, acetone, and isoprene. Carbon dioxide caused a small increase (<10% for 5% CO2) of the normalised main signals for the non-fragmenting molecules methanol and acetone. The increase can be much higher for the fragmenting VOCs (ethanol, propanol, and isoprene) and was, for 5% CO2, up to 60% for ethanol. This effect of CO2 on fragment patterns is mainly a consequence of the increased abundance of protonated water clusters, which undergo softer reactions with VOCs than the hydronium ions. Breath gas samples stored in Teflon bags lost 80% of CO2 during 3 days, the decrease of VOC signals, however, is mainly attributed to decreasing VOC concentrations and to the loss of humidity from the bags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号