首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on a constitutive law which includes the shear components of transformation plasticity, the asymptotic solutions to near-tip fields of plane-strain mode I steadity propagating cracks in transformed ceramics are obtained for the case of linear isotropic hardening. The stress singularity, the distributions of stresses and velocities at the crack tip are determined for various material parameters. The factors influencing the near-tip fields are discussed in detail.Project supported by the National Natural Science Foundation of China  相似文献   

2.
蠕变材料Ⅰ型动态扩展裂纹尖端场   总被引:4,自引:1,他引:4  
唐立强  蔡艳红 《力学学报》2005,37(5):573-578
为了研究黏性效应作用下的动态扩展裂纹尖端渐近场,建立了蠕变材料Ⅰ型动态扩展裂纹的 力学模型.首先,依据在稳态蠕变阶段,弹性变形和黏性变形同时在裂纹尖端场中占主导地 位,由量级协调可知,应力和应变具有相同的奇异量级,即(σ,ε)∝/ r- 1/(n-1). 其次,通过渐近分析推导出动态扩展裂纹尖端场的控制方程并求得了裂纹尖端应 力、应变和位移分离变量形式的渐近解.最后,采用双参数打靶法求得了裂纹尖端应力、应 变的数值结果.数值计算表明,裂尖场主要受材料的蠕变指数n和马赫数M的控制;在Ⅰ 型动态扩展裂纹前方,环向应变达到最大值,可据此建立断裂准则. 由于裂纹稳定扩展与非稳定扩展的主奇异项相同,因此对于稳定扩展裂纹的渐近分析方 法,同样适用于非稳定的裂纹扩展问题.  相似文献   

3.
Material toughening could be furnished by the energy dissipating wakes and bridging segments during crack growth. According to their contributions to the energy integral applicable to a growing crack, the toughening mechanisms are categorized as: dilatational plasticity and induced shear yielding in the crack wakes, bridging due to second inclusion phases, and the matrix bridging caused by wavy crack front. Detailed toughening analysis is pursued for structural polymers and composite materials reinforced by short aligned fibers. Sponsored by the State Education Commission of China and by the Fok Ying-Tung Education Foundation  相似文献   

4.
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.  相似文献   

5.
By the application of the theory of complex functions, asymmetrical dynamic propagation problems on modeⅢinterface crack are studied. The universal representations of analytical solutions are obtained by the approaches of self-similar function. The problems researched can be facilely transformed into Riemann-Hilbert problems and analytical solution to an asymmetrical propagation crack under the condition of point loads and unit-step loads, respectively, is acquired. After those solutions were used by superposition theorem, the solutions of arbitrarily complex problems could be attained.  相似文献   

6.
EXACTSOLUTIONSOFNEARCRACKLINEFIELDSFORMODEICRACKUNDERPLANESTRESSCONDITIONINANELASTIC-PERFECTLYPLASTICSOLIDEXACTSOLUTIONSOFNEA...  相似文献   

7.
通过复变函数论的方法,对非对称Ⅲ型界面裂纹扩展的动态问题进行了研究.采用自相似函数的方法可以轻易地将所论问题转化为Riemann-Hilbert问题,并求得了裂纹坐标原点分别受到变载荷$Pt/ x$, $Px^3 /t^2$作用下的解析解的一般表达式.通过Muskhelishvili方法可以相当简单地得到问题的闭合解. 利用这些解并采用叠加原理,可以求得任意复杂问题的解.   相似文献   

8.
In this paper the near-tip temperature distribution for Mode III stationary crack in power-hardening materials is studied within the framework of thermodynamics. The hardening of materials is characterized as internal state variables to investigate the plastic dissipation. Numerical results indicate that the local temperature rise near crack tip by taking account of hardening is appreciably lower than those in perfectly-plastic case, and thus, are in better accord with the experimental results.The project is supported by National Natural Science Foundation of China  相似文献   

9.
本文采用压力敏感准则和松函数法对相变增韧陶瓷Ⅱ-Ⅲ混合型裂纹的增韧效应进行了理论预测。分别给出了静止裂纹和定常扩展裂纹相变塑性屏蔽的理论表达式。结果表明:相变对静止裂纹有甚微的负屏蔽效应,并随KⅢ/KⅡ的比值而波动;相变对定常扩展裂纹的增韧结果除与材料弹性模量、相变尾区高度和相变体积分数有关外,还与KⅢ/KⅡ的比值有关。  相似文献   

10.
In this paper, the steady crack growth of mode III under small scale yielding conditions is investigated for anisotropic hardening materials by the finite element method. The elastic-plastic stiffness matrix for anisotropic materials is given. The results show the significant influences of anisotropic hardening behaviour on the shape and size of plastic zone and deformation field near the crack tip. With a COD fracture criterion, the ratio of stress intensity factorsk ss/kc varies appreciably with the anisotropic hardening parameterM and the hardening exponentN.  相似文献   

11.
A finite element study of stable crack growth in ceramics that can undergo a stress-induced martensitic phase transformation is performed under plane stress and small scale transforming conditions. The finite element method is based on the continuum model developed by Budiansky et al. (Int. J. Solids Structures 19, 1983). To guarantee the subcritical transformation behavior without loss of ellipticity of the governing equations, the possibility of strain localization is first re-examined. It is found that the plane stress conditions greatly favor transformation instability in that supercritical transformation occurs when the bulk modulus ¯B during transformation is below –G/3, instead of –4G/3 for three-dimensional or plane strain cases, whereG is the shear modulus. Next, transient crack extension under continuously increasing tensile load is simulated by a node release technique. Transformation zones and crack growth resistance curves are obtained.  相似文献   

12.
A high order of asymptotic solution of the singular fields near the tip of a mode III interface crack for pure power-law hardening bimaterials is obtained by using the hodograph transformation. It is found that the zero order of the asymptotic solution corresponds to the assumption of a rigid substrate at the interface, and the first order of it is deduced in order to satisfy completely two continuity conditions of the stress and displacement across the interface in the asymptotic sense. The singularities of stress and strain of the zeroth order asymptotic solutions are −1/(n 1+1) and −n/(n 1+1) respectively. (n=n 1,n 2 is the hardening exponent of the bimaterials.) The applicability conditions of the asymptotic solutions are determined for both zeroth and first orders. It is proved that the Guo-Keer solution[10] is limited in some conditions. The angular functions of the singular fields for this interface crack problem are first expressed by closed form. The project supported by National Natural Science Foundation of China  相似文献   

13.
采用压力敏感准则和权函数法对相变增韧陶瓷I-II混合型裂纹的增韧效应进行了理论预测,分别给出了静止裂纹和定常扩展裂纹相变生屏蔽的理论表达式,并通过计算机进行了数值计算,结果表明:相变对静止裂纹有负屏蔽效应,并随KII/KI的比值增大而增大,对定常扩展裂纹的增韧结果除与材料弹性模量,相变尾区高度和相变体积分数有关外,还随KII/KI的比值增大而增大,说明相变对II型裂纹的增韧作用比对I型裂纹的增韧作用更显著。  相似文献   

14.
Theoretical analysis of crack front instability in mode I+III   总被引:1,自引:0,他引:1  
This paper focusses on the theoretical prediction of the widely observed crack front instability in mode I+III, that causes both the crack surface and crack front to deviate from planar and straight shapes, respectively. This problem is addressed within the classical framework of fracture mechanics, where the crack front evolution is governed by conditions of constant energy-release-rate (Griffith criterion) and vanishing stress intensity factor of mode II (principle of local symmetry) along the front. The formulation of the linear stability problem for the evolution of small perturbations of the crack front exploits previous results of Movchan et al. (1998) (suitably extended) and Gao and Rice (1986), which are used to derive expressions for the variations of the stress intensity factors along the front resulting from both in-plane and out-of-plane perturbations. We find exact eigenmode solutions to this problem, which correspond to perturbations of the crack front that are shaped as elliptic helices with their axis coinciding with the unperturbed straight front and an amplitude exponentially growing or decaying along the propagation direction. Exponential growth corresponding to unstable propagation occurs when the ratio of the unperturbed mode III to mode I stress intensity factors exceeds some “threshold” depending on Poisson's ratio. Moreover, the growth rate of helical perturbations is inversely proportional to their wavelength along the front. This growth rate therefore diverges when this wavelength goes to zero, which emphasizes the need for some “regularization” of crack propagation laws at very short scales. This divergence also reveals an interesting similarity between crack front instability in mode I+III and well-known growth front instabilities of interfaces governed by a Laplacian or diffusion field.  相似文献   

15.
The near crack line field analysis method has been used to investigate into ModeⅢ quasistatically propagating crack in an elastic-perfectly plastic material.Thesignificance of this paper is that the usual small scale yielding theory has been brokenthrough.By obtaining the general solutions of the stresses and the displacement rate ofthe near crack line plastic region,and by matching the general solutions with theprecise elastic fields(not the usual elastic K-dominant fields)at the elastic-plasticboundary,the precise and new solutions of the stress and deformation fields,the sizeof the plastic region and the unit normal vector of the elastic-plastic boundary havebeen obtained near the crack line.The solutions of this paper are sufficiently precisenear the crack line region because the roughly qualitative assumptions of the smallscale yielding theory have not been used and no other roughly qualitative assumptionshave been taken,either.The analysis of this paper shows that the assumingly“steady-state cas  相似文献   

16.
A higher order asymptotic solution of near-tip field is studied for plane-atrain Mode-I quasi-static steady crack growth in the incompressible (v=1/2) elastic perfectly-plastic media. The results show that the near-tip stress and strain are fully continuous, and the strain possesses In (A/r) singularity at the crack tip. The expressions of the stress, strain and velocity in each region are also given. The project supported by National Natural Science Foundation of China  相似文献   

17.
THEEXACTSOLUTIONSOFELASTIC-PLASTICCRACKLINEFIELDFORMODEIIPLANESTRESSCRACKYiZhijian(易志坚)WangShijie(王士杰)WangXiangjian(王向坚)(Rece...  相似文献   

18.
With the theory of complex functions, dynamic propagation problems concerning surfaces of asymmetrical mode III crack subjected to moving loads are investigated. General representations of analytical solutions are obtained with self-similar functions. The problems can be easily converted into Riemann-Hilbert problems using this technique. Analytical solutions to stress, displacement and dynamic stress intensity factor under constant and unit-step moving loads on the surfaces of asymmetrical extension crack, respectively, are obtained. By applying these solutions, together with the superposition principle, solutions of discretionarily intricate problems can be found. Project supported by the Post-Doctoral Science Foundation of China (No. 2005038199) and the Natural Science Foundation of Heilongjiang Province of China (No. ZJG04-08)  相似文献   

19.
The present study develops the fracture theory for a two-dimensional octagonal quasicrystals. The exact analytic solution of a Mode Ⅱ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, then the displacement and stress fields, stress intensity factor and strain energy release rate were determined, the physical sense of the results relative to phason and the difference between mechanical behaviors of the crack problem in crystal and quasicrystal were figured out. These provide important information for studying the deformation and fracture of the new solid phase.  相似文献   

20.
The influence of the length of a mode I crack on the plastic zone in an anisotropic body under hard loading is studied. The case of a generalized plane stress state is examined. A boundary-value problem is solved numerically to study the behavior of the main plastic zone at the crack tip, the additional plastic zone on the lateral face of the body, and the merged plastic zone Translated from Prikladnaya Mekhanika, Vol. 44, No. 9, pp. 36–52, September 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号