首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the development of highly efficient and color-saturated green fluorescent 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-benzo[l]pyrano-[6,7,8-ij]quinolizin-11-one dye-doped inverted bottom-emitting organic light-emitting diode (IBOLED). This was enabled by the insertion of a silver (Ag) based semi-transparent metal-assisted electron injection layer between the ITO cathode and n-doped electron transporting layer. This IBOLED with ITO/Ag bilayer cathode with its synergistic microcavity effect achieved luminous efficiencies of 20.7 cd/A and 12.4 lm/W and a saturated CIEx,y of (0.22, 0.72) at 20 mA/cm2, which are twice better than those of the conventional OLED and have over 60% improvement on IBOLED without ITO/Ag bilayer cathode.  相似文献   

2.
Efficiency and brightness and carriers injection have been obviously improved by using bathocuproine (BCP) as a buffer-layer in organic light-emitting diodes. Compared with the bufferless device, the quantum efficiency of device ITO/NPB (10 nm)/Alq3 (10 nm)/BCP (2.4 nm)/Al has increased four times at the same current density (32 mA/cm2). Moreover, the buffer layer has changed the current-voltage properties and the turn-on voltage has obviously decreased. Considering BCP and Al3+ can react conveniently under room temperature, we suggest that a complex cathode structure of BCP/[(Al)x(BCP)y]3x+/Al has formed under electric field and the new cation [(Al)x(BCP)y]3x+ at the BCP/Al interface has improved the internal electric field and then enhanced the electrons injection. we conclude that: for a very thin (<1 nm) BCP buffer layer, improving electron injection will principally responsible to the improvement of the performance of the OLEDs; for a thicker BCP layer, there will be a synthetic function of BCP: improving electron injection, hole-blocking and electron-transporting.  相似文献   

3.
We demonstrate all-in-one-type organic light-emitting diodes (OLEDs) that are fabricated using a color converting plate as a substrate. The color converting plate is Pb-free phosphor-in-glass (PiG), which is prepared by mixing Y3Al5O12:Ce3+ (YAG:Ce3+) and SiO2–B2O3–RO (R = Ba, Zn) glass frit by sintering at 750 °C for 30 min. The maximum luminance, luminance efficiency, and power efficiency of blue OLEDs fabricated on commercial glass are measured as 10500 cd/m2, 10.18 cd/A, and 2.95 lm/W, respectively. The Commission Internationale de l'Eclairge (CIE) coordinates of blue OLEDs is (0.167, 0.325). Our obtained results show that the luminance value decreased as the PiG thickness increased, and the glass to phosphor (GTP) ratio decreased. The OLED devices fabricated on the PiG substrate (GTP ratio = 9:1, thickness: 150 μm) showed a maximum luminance, luminance efficiency, and power efficiency of 7600 cd/m2, 8.76 cd/A, and 2.85 lm/W, respectively. The CIE color coordinates changed to (0.286, 0.504) at 200 mA/cm2. These results proved that color coordination can be easily adjusted by varying the GTP ratio and the thickness of the PiG.  相似文献   

4.
A series of europium complexes were synthesized and their electroluminescent (EL) characteristics were studied. It was found by comparison that the different substituted groups, such as methyl, chlorine, and nitryl, on ligand 1,10-phenanthroline affect significantly the EL performance of devices based on these complexes. The more methyl-substituted groups on ligand 1,10-phenanthroline led to higher device efficiency. A chlorine-substituted group showed the approximate EL performance as two methyl-substituted groups, whereas a nitryl substituent reduced significantly the EL luminous efficiency. However, β-diketonate ligand TTA and DBM exhibited similar EL performance. The improved EL luminous efficiency by proper substituted groups on the 1,10-phenanthroline was attributed to the reduction of the energy loss caused by light hydrogen atom vibration, as well as concentration quenching caused by intermolecular interaction, and the match of energy level between the ligand and Eu3+.  相似文献   

5.
We investigate p-type doping poly(9-vinylcarbazole) (PVK) hole-transport layer (HTL) with tetrafluoro-tetracyano-quinodimethane introduced via cosolution. We found that the performances of devices with doped HTLs are significantly improved. The efficiency and lifetime of the p-doped device are 2.3 and 3.7 times as large as that of the control device with pure PVK as a HTL. Furthermore, the turn-on voltage of the device is reduced from 9.5 to 3.6 V by using a p-doped HTL. These improved properties are attributed to the formation of the charge-transfer complex in the HTL, which increases hole injection and conductivity of p-doped films considerably.  相似文献   

6.
High efficiency blue phosphorescent organic light-emitting diodes were fabricated without an electron transport layer using a spirobifluorene based blue triplet host material. The simple blue PHOLEDs without the electron transport layer showed a high external quantum efficiency and current efficiency of 16.1% and 30.2 cd/A, respectively. The high device performances of the electron transport layer free blue PHOLEDs were comparable to those of blue PHOLEDs with the electron transport layer.  相似文献   

7.
High efficiency single layer blue phosphorescent organic light-emitting diodes (PHOLEDs) without any charge transport layer were developed. A mixed host of spirobifluorene based phosphine oxide (SPPO13) and 1, 1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) was used as the host in the emitting layer. A high maximum external quantum efficiency of 15.8% and a quantum efficiency of 8.6% at 1000 cd/m2 were achieved in the single-layer blue PHOLEDs without any charge transport layer. The maximum power efficiency and power efficiency at 1000 cd/m2 were 31.4 and 16.9 lm/W, respectively.  相似文献   

8.
We have studied temperature-dependent electrical properties of organic light-emitting diodes with a variation of cathode materials; Al, LiAl, and LiF/Al. The organic light-emitting diodes emit a light by a recombination of injected charge carriers such as holes and electrons. Thus, the charge transport is affected by the injection barrier at the interface. By varying the cathode materials, the electron injection at the interface could be controlled because of the work-function change at the cathode. Temperature-dependent current–voltage luminance characteristics of the organic light-emitting diodes were measured in the temperature range from 10 to 300 K. The current-voltage characteristics were analyzed in terms of Fowler–Nordheim tunneling model, and the energy-barrier height was obtained. A measured lifetime of device with LiF/Al cathode is relatively longer than the other cathodes at room temperature: 4.5 h for Al cathode, 12.4 h for LiAl, and 29.6 h for LiF/Al. The device with LiAl and LiF/Al cathode, in the aspect of lifetime and luminous efficiency, is superior to one of other cathodes.  相似文献   

9.
We demonstrate a non-doped white organic light-emitting diode (WOLED) in which the blue-, green- and red-emissions are generated from 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl, tris(8-hydroxyquinoline)aluminum (Alq) and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyl-julolidyl 9-enyl)-4H-pyran (DCJTB), which is used as an ultrathin layer. The DCJTB ultrathin layer plays the chromaticity tuning role in optimizing the white spectral band by modulating the location of the DCJTB ultrathin layer in the green emissive Alq layer. The optimized WOLED gives the Commission Internationale de l’Eclairage-1931 xy coordinates of (0.319, 0.335), a color rendering index of 91.2 at 10 V, a maximum brightness of 21010 cd/m2 at 12 V and a maximum current efficiency of 5.17 cd/A at 6.6 V. The electroluminescence mechanism of the white device is also discussed.  相似文献   

10.
The multilayer organic light-emitting diodes (OLEDs) have been fabricated with a thin alkaline metal chloride layer inserted inside an electron transport layer (ETL), tris (8-hydroxyquinoline) aluminum (Alq3). The alkaline metal chloride layer was inserted inside 60 nm Alq3 at d=0, 10, 20 and 30 nm positions (d is the distance of the interlayer away from the Al cathode). The devices, with alkaline metal chlorides inserted at the Alq3/Al interface, showed electron injection and electroluminescence (EL) intensity improvements. When the alkaline metal chlorides were inserted inside the Alq3 layer at 10, 20 or 30 nm position apart from the Al cathode, both EL intensity and efficiency were enhanced for the devices with a thin potassium chloride (KCl) or rubidium chloride (RbCl) layer. On the contrary, the improvements were not observed for the OLEDs with a thin sodium chloride (NaCl) layer. A proposed insulator buffer layer model is employed to explain these characteristics of the devices.  相似文献   

11.
We report highly efficient all phosphorescent white organic light-emitting diodes (OLEDs) with an exciton-confinement structure. By stacking two emissive layers (EMLs) with different charge transporting properties, effective charges as well as exciton confinements were achieved. Accordingly, efficient blue OLEDs with a peak external quantum efficiency (EQE) over 22% and power efficacy (PE) over 50 lm/W were developed by using iridium(III) bis(4,6-(difluorophenyl) pyridinato-N,C2′)picolinate (FIrpic) as an electro-phosphorescent dopant. When the optimized orange and red EMLs were sandwiched between the stacked two blue EMLs, white OLEDs with an EQE and PE of 24.3% and 45.9 lm/W at a luminance of 1000 cd/m2 were obtained without the use of any out-coupling techniques. In addition, these white OLEDs exhibit a color rendering index (CRI) value of 84 with high efficacy.  相似文献   

12.
焦威  雷衍连  张巧明  刘亚莉  陈林  游胤涛  熊祖洪 《物理学报》2012,61(18):187305-187305
制备了结构为ITO/CuPc/NPB/Alq3/LiF/Al的常规有机发光二极管, 之后对器件采用波长为442 nm和325 nm的激光线进行照射产生激子, 并在小偏压下(保证器件没有开启)对激子的演化过程进行控制, 同时测量器件的光致磁电导(photo-induced magneto-conductance, PIMC). 实验发现, 不同于电注入产生激子的磁电导效应, PIMC在正、反小偏压下表现出明显不同的磁响应结果. 当给器件加上正向小偏压时, 器件的PIMC在0-40 mT范围内迅速上升; 随着磁场的进一步增大, 该PIMC增加缓慢, 并逐渐趋于饱和. 反向小偏压时, 器件的PIMC随着磁场也是先迅速增大(0-40 mT), 但达到最大值后却又逐渐减小. 通过分析外加磁场对器件光生载流子微观过程的影响, 采用'电子-空穴对'模型和超精细相互作用理论对正向偏压下的PIMC进行了解释; 反向偏压下因各有机层的能级关系, 为激子与电荷相互作用提供了必要条件, 运用三重态激子与电荷的反应机制可以解释PIMC出现高场下降的实验现象.  相似文献   

13.
We report the synthesis of pyrene derivatives as the light emissive layer for highly efficient organic electroluminescence (EL) diodes. Multilayer devices were fabricated with pyrene derivatives (ITO/NPB (50 nm)/blue material (30 nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al). By using 1,1′-dipyrene (DP) and 1,4-dipyrenyl benzene (DPB), the devices produced the blue EL emissions with 1931 Commission International de L’Eclairage coordinates of (x=0.21, y=0.35) and (x=0.19, y=0.25), respectively. The device with DPB shows a maximum brightness of 42,445 cd/m2 at 400 mA/cm2 and the luminance efficiency of 8.57 cd/A and 5.18 lm/W at 20 mA/cm2.  相似文献   

14.
We fabricated simple and color-stable phosphorescent white organic light-emitting diodes (OLEDs) without an interlayer using a single host of 1,3-bis(9-carbazolyl)benzene with iridium(III) bis[(4,6-difluorophenyl) pyridinato-N,C2’]picolinate and bis(1-phenylisoquinoline)(acetylacetonate) iridium(III) as blue and red phosphorescent emitters, respectively. The CIE 1931 color coordinate difference of the white OLEDs is (0.008, 0.007) when the luminance of the device is increased from approximately 265 cd/m2 to 9156 cd/m2, which is regarded as visually indistinguishable in practice. In addition, we also measured the decay time of excitons to investigate the emission mechanism in this device using transient photoluminescence and electroluminescence techniques.  相似文献   

15.
基于一种将具有电荷传输性的双极性主体材料与蓝、黄光客体材料共蒸的单层结构的同质结结构,制备了色温可调的白光有机电致发光器件(OLED)。由于不存在激子阻挡层,单层结构容易发生漏电流现象,致使OLED器件具有较高的工作电压和较低的电流/功率效率。在空穴/电子传输层进行p/n型掺杂的同质结结构则大大改善了器件性能。研究表明: 该种器件结构获得了相对较低的起压5.6 V,较高的电流效率2.64 cd/A和低效率滚降,其色坐标则随着亮度的增加沿着普朗克轨迹变化,产生类似于太阳光的发光特性。另外,对主体材料和共蒸层的电荷载流子的传输特性和复合机制也进行了一系列分析研究。  相似文献   

16.
Novel types of multilayer color-tunable organic light-emitting devices (OLEDs) with the structure of indium tin oxide (ITO)/N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB)/aluminum (III)bis(2-methyl-8-quinolinato)4-phenylphenolato (BAlq)/tris-(8-hydroxyquinolate)-aluminum (Alq3)/Mg:Ag were fabricated. By inserting a thin layer with different thickness of a second NPB layer at the heterojunction interface of BAlq/Alq3, the emission zone of devices shifted greatly and optoelectronic characteristics underwent large variation. Although BAlq was reported as a very good hole-blocking and blue-light-emission material, results of measurements in this paper suggested that a certain thickness of NPB layer between BAlq and Alq3 plays an important role to modify device characteristics, which can act as recombination-controlling layer in the multilayer devices. It also provides a simple way to fabricate color-tunable OLEDs by just changing the thickness of this “recombination-controlling” layer rather than doping by co-evaporation.  相似文献   

17.
In this study the performance of organic light-emitting diodes(OLEDs) are enhanced significantly,which is based on dual electron transporting layers(Bphen/CuPc).By adjusting the thicknesses of Bphen and CuPc,the maximal luminescence,the maximal current efficiency,and the maximal power efficiency of the device reach 17570 cd/m2 at 11 V,and 5.39 cd/A and 3.39 lm/W at 3.37 mA/cm2 respectively,which are enhanced approximately by 33.4%,39.3%,and 68.9%,respectively,compared with those of the device using Bphen only for an electron transporting layer.These results may provide some valuable references for improving the electron injection and the transportation of OLED.  相似文献   

18.
陈飞鹏  徐斌  赵祖金  田文晶  吕萍 《中国物理 B》2010,19(3):37801-037801
White organic light-emitting diodes with a blue emitting material fluorene-centred ethylene-liked carbazole oligomer (Cz6F) doped into polyvinyl carbazole (PVK) as the single light-emitting layer are reported. The optical properties of Cz6F, PVK, and PVK:Cz6F blends are studied. Single and double layer devices are fabricated by using PVK: Cz6F blends, and the device with the configuration of indium tin oxide (ITO)/PVK:Cz6F/ tris(8-hydroxyquinolinate)aluminium (Alq3)/LiF/Al exhibits white light emission with Commission Internationale de l'éclairage chromaticity coordinates of (0.30, 0.33) and a brightness of 402~cd/m2. The investigation reveals that the white light is composed of a blue--green emission originating from the excimer of Cz6F molecules and a red emission from an electroplex from the PVK:Cz6F blend films.  相似文献   

19.
设计中心波长为520nm,改变有机层厚度,即空穴传输层NPB和发光层Alq3的厚度,分别由10nm逐渐增加至100nm,器件的总体厚度也随着改变,分别计算模拟出有机电致发光器件(OLED)和微腔有机电致发光器件(MOLED)的电致发光谱(EL),并对光谱的积分强度、峰值强度、半峰全宽、峰值位置的三维分布图进行比较分析。综合考虑光谱的峰值位置(中心波长)、最大的峰值强度和积分强度(与亮度、效率相关)、最小半峰全宽(色纯度高)进行合理的设计,可以找到最佳厚度。发现:NPB和Alq3的厚度分别为70和62nm时,器件性能最佳,并且微腔器件的结果尤为明显。结果表明,通过模拟计算,可以深入探索MOLED和OLED发光特性,设计出合理的器件结构。  相似文献   

20.
InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum wells are numerically investigated by using the APSYS simulation software. It is found that the structure with dip-shaped quantum wells shows improved light output power, lower current leakage and less efficiency droop. Based on numerical simulation and analysis, these improvements on the electrical and the optical characteristics are attributed mainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号