首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 122 毫秒
1.
Reaction of 3-(Dimethylamino)-2H-azirines with 1,3-Oxazolidine-2-thione to 3-(2-Hydroxyethyl)-2- thiohydantoins The reaction of 3-(dimethylamino)-2H-azirines 1 and 1,3-oxazolidine-2-thione ( 6 ), in MeCN at room temperature, yields, after hydrolytic workup, 3-(2-hydroxyethyl)-2-thiohydantoins 7 (Scheme 2). In the case of the spirocyclic 1c , crystallization of the crude reaction mixture leads to spiro [cyclopentane-1, 7′(7′aH)-imidazo [4, 3-b] oxazole] -5′-thione 8c . The mechanism is discussed.  相似文献   

2.
本文首次报道了3-(2喹啉基) 酚酮的卤代和硝化反应在冰乙酸介质中,3-(2喹啉基) 酚酮与溴反应,在不同条件下分别得到单溴代产物和双溴代产物; 与硝酸反应得到单硝酸化产物,与过量硝酸反应,得到的硝化产物。  相似文献   

3.
Reaction of 3-(Dimethylamino)-2H-azirines with 1,3-Benzoxazole-2(3H)-thione The reaction of 3-(dimethylamino)-2H-azirines 2 with 1,3-benzoxazole-2(3H)-thione ( 5 ), which can be considered as NH-acidic heterocycle (pKaca. 7.3), in MeCN at room temperature, leads to 3-(2-hydroxyphenyl)-2-thiohydantoins 6 and thiourea derivatives of type 7 (Scheme 2). A reaction mechanism for the formation of the products via the crucial zwitterionic intermediate A ′ is suggested. This intermediate was trapped by methylation with Mel and hydrolysis to give 9 (Scheme 4). Under normal reaction conditions, A ′ undergoes a ring opening to B which is hydrolyzed during workup to yield 6 or rearranges to give the thiourea 7. A reasonable intermediate of the latter transformation is the isothiocyanate E (Scheme 3) which also could be trapped by morpholine. In i-PrOH at 55–65° 2a and 5 react to yield a mixture of 6a , 2-(isopropylthio)-1,3-benzoxazole ( 12 ), and the thioamide 13 (Scheme 5). A mechanism for the surprising alkylation of 5 via the intermediate 2-amino-2-alkoxyaziridine F is proposed. Again via an aziridine, e.g. H ( Scheme 6 ), the formation of 13 can be explained.  相似文献   

4.
Treatment of MoCl(3)(thf)(3) with LiSC(6)H(3)-2,6-(SiMe(3))(2) (LiSAr) resulted in formation of the pi-sandwiched bis-arylthiolato complex, Mo(eta(5)-SC(6)H(3)-2,6-(SiMe(3))(2))(eta(7)-SC(6)H(3)-2,6-(SiMe(3))(2)) (1), while the analogous reaction with LiSC(6)H(3)-2-Ph-6-SiMe(3) afforded the trithiolate complex Mo(SC(6)H(3)-2-Ph-6-SiMe(3))(3) (3). The acetonitrile adduct Mo(SAr)(2)(CH(3)CN)(3) (2) was isolated from the CH(3)CN solution of 1, in which one acetonitrile is coordinated to the metal center in an eta(2)-fashion. Structures of 1, 2, and 3 have been determined by X-ray diffraction.  相似文献   

5.
Two lithium sulfenamides were prepared by reaction of (CH(3))(3)C-N(H)-S-C(6)H(4)CH(3)-4 (1) and 4-CH(3)C(6)H(4)-N(H)-S-C(6)H(4)CH(3)-4 (2) with an alkyllithium. The unsolvated sulfenamide Li[(CH(3))(3)C-NS-C(6)H(4)CH(3)-4] (3) was soluble enough for variable-temperature (VT) (7)Li NMR to provide evidence of a dynamic exchange of oligomers in solution. The crystal structures of the solvated sulfenamides of [Li(2)(eta(2)-(CH(3))(3)C-NS-C(6)H(4)CH(3)-4)(2)(THF)(2)] (4) and of [Li(2)(eta(1)-4-CH(3)C(6)H(4)-NS-C(6)H(4)CH(3)-4)(2)(THF)(4)] (6) consisted of dimers in which the anions display different hapticities. The VT (7)Li NMR spectra of 4 suggest that the two different structures exist in equilibrium in toluene-THF mixtures. These compounds are easily oxidized to the neutral thioaminyl radicals as identified by EPR spectroscopy.  相似文献   

6.
The title compound (Z)-1-(3-fluorobenzyl)-5-((3-fluorobenzylimino)(2-hydroxy-4- methoxyphenyl)methyl)pyridin-2(1H)-one (C27H22F2N2O3,Mr = 460.47) was synthesized and crystallized. The crystal belongs to the triclinic system,space group P1 with a = 9.951(6),b = 10.059(6),c = 12.927(7)A,α = 109.828(7),β = 102.304(7),γ = 104.898(7)°,Z = 2,V = 1110.2(11)A^3,Dc =1.377 Mg/m^3,μ(MoKα) = 0.102 mm^-1,F(000) = 480,the final R = 0.0449 and Rw = 0.1250 for 4595 observed reflections (I 〉 2σ(I)). X-ray analysis reveals that both m-fluorobenzyl groups are diorientationally disordered because of the rotation of C–C single bond which was represented as F(1),F(2) and F(1'),F(2'). The diorientational disorder was refined and gave the occupancies of 0.665(4) and 0.335(4) for F(1) and F(1'),0.631(3) and 0.369(3) for F(2) and F(2'). Hydrogen bonds existing in the cell link different components to stabilize the crystal structure. The active data proved that the title compound has good anti-HBV activity.  相似文献   

7.
Methyl (E)-2-(acetylamino)-3-cyanoprop-2-enoate ( 2a ), and its 2-benzoyl analog 2b ere prepared from the corresponding methyl (Z)-2-(acylamino)-3-(dimethylamino)propenoates 1 Multifunctional compounds 2 are versatile synthons for preparation of polysubstituted heterocyclic systems such as pyrroles 4 , pyrimidines 5 and 6 , pyridazines 7 , pyrazoles 8 , 9 , and 11 , and isoxazoles 10 .  相似文献   

8.
The speciation in the phosphitomolybdate system, H+-MoO4(2-)-(HP)O(3)2-, has been determined from combined potentiometric and 31P NMR measurements in 0.600 M Na(Cl) medium at 298(1) K. Potentiometric titration data were collected in the ranges 2.5<-log[H+]<6.2, 40.0相似文献   

9.
Benzopyran compounds possess diverse pharmacological properties such as β-blockade, anticonvulsant and antimicrobial.[1,2] Our interest has been focused on the synthesis of 1-[6-Fluoro-2S]-3H,4H-dihydro-2H-2-chromenyl]-(1R)-1,2-ethanediol (6) and 1-[6-fluoro-(2R)-3H,4H-dihydro-2H-2-chromenyl]-(1R)-1,2-ethanediol (7) which are particularly convenient precursor to (S,R,R,R)-NE (8). 8 containing four asymmetrical carbon atoms was reported to be the most active isomer.[3] Chandrasekhar[4] has reported on the synthesis of 8. The key step to synthesize this compound is to obtain the chiral chromanone 6 and 7. 6 was accomplished in 8 steps by the Clasien rearrangement and a one-pot Sharpless asymmetric epoxidation, but the compound 7 was accomplished in 10 steps. Johannes[5] used Zr-catalytic kinetic resolution of allylic ethers and Mo-catalyzed chromene formation to synthesize 8 in 14 steps. However both of the methods request many synthetic steps and expensive reagents.  相似文献   

10.
Synthesis of 3-(2-Carboxy-4-pyridyl)-and 3-(6-Carboxy-3-pyridyl)-DL-alanine As starting materials for potential photochemical approaches to betalaines C(R = COOH) and to muscaflavine F(R = COOH), β-(2-carboxy-4-pyridyl)- and β-(6(carboxy-3-pyridyl))-DL-alanine ( A and D with R = COOH or 4 and 11 ), respectively, were prepared (Scheme 1). The synthesis of 4 (= A, R = COOH) started with the 2-[(4-pyridyl)methyl]malonate 1 and proceeded via the N-oxide 2 , cyanation and hydrolysis (Scheme 2). Amino acid 11 was obtained from (3-pyridyl)methyl-bromide ( 6 ) via the malonate 7 by an analogous sequence of reactions (Scheme 3).  相似文献   

11.
3-(2-Quinolyl)- and 3-(5-carbethoxyfuryl-2)coumarins were prepared by reaction of substituted salicylaldehydes and hetarylacetonitriles. Alkylation and acylation of 3-hetaryl-7-hydroxycoumarins were studied. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 432–434, September–October, 2005.  相似文献   

12.
Alkyl 3-(2-aminoethyl)-1H-indole-2-acetates 6a and 6b are synthesized starting from methyl 1H-indole-2-acetate (2) via methyl 3-(2-nitroethenyl)-1H-indole-2-acetate (4) and the alkyl 3-(2-nitroethyl)-1H-indole-2-acetates 5a and (Scheme 1). Analogously, diisopropyl 3-(2-aminoethyl)-1H-indole-2-malonate 20b is obtained from diisopropyl 1H-indole-2-malonate 11c (Scheme 4). An alternative synthesis of 20a and 20b follows a route via 15–18 and the dialkyl 3-(2-azidoethyl)-1H-indole-2-malonates 19a and 19b , respectively (Scheme 3). The aminoethyl compounds 6a and 20a are easily transformed into lactams 7 and 21 , respectively. Procedures for the preparation of the indoles 2 and 11a and of the alkylating agent 14 are described. A tautomer 12 of 11a is isolated.  相似文献   

13.
Vanadium(III) and vanadium(V) complexes derived from the tris(2-thiolatoethyl)amine ligand [(NS3)3-] and the bis(2-thiolatoethyl)ether ligand [(OS2)2-] have been synthesized with the aim of investigating the potential of these vanadium sites to bind dinitrogen and activate its reduction. Evidence is presented for the transient existence of (V(NS3)(N2)V(NS3), and a series of mononuclear complexes containing hydrazine, hydrazide, imide, ammine, organic cyanide, and isocyanide ligands has been prepared and the chemistry of these complexes investigated. [V(NS3)O] (1) reacts with an excess of N2H4 to give, probably via the intermediates (V(NS3)(NNH2) (2a) and (V(NS3)(N2)V(NS3) (3), the V(III) adduct [V(NS3)(N2H4)] (4). If 1 is treated with 0.5 mol of N2H4, 0.5 mol of N2 is evolved and green, insoluble [(V(NS3))n] (5) results. Compound 4 is converted by disproportionation to [V(NS3)(NH3)] (6), but 4 does not act as a catalyst for disproportionation of N2H4 nor does it act as a catalyst for its reduction by Zn/HOC6H3Pri2-2,6. Compound 1 reacts with NR1(2)NR2(2) (R1 = H or SiMe3; R2(2) = Me2, MePh, or HPh) to give the hydrazide complexes [V(NS3)(NNR2(2)] (R2(2) = Me2, 2b; R2(2) = MePh, 2c; R2(2) = HPh, 2d), which are not protonated by anhydrous HBr nor are they reduced by Zn/HOC6H3Pri2-2,6. Compound 2b can also be prepared by reaction of [V(NNMe2)(dipp)3] (dipp = OC6H3Pri2-2,6) with NS3H3. N2H4 is displaced quantitatively from 4 by anions to give the salts [NR3(4)][V(NS3)X] (X = Cl, R3 = Et, 7a; X = Cl, R3 = Ph, 7b; X = Br, R3 = Et, 7c; X = N3, R3 = Bu(n), 7d; X = N3, R3 = Et, 7e; X = CN, R3 = Et, 7f). Compound 6 loses NH3 thermally to give 5, which can also be prepared from [VCl3(THF)3] and NS3H3/LiBun. Displacement of NH3 from 6 by ligands L gives the adducts [V(NS3)(L)] (L = MeCN, nu CN 2264 cm-1, 8a; L = ButNC, nu NC 2173 cm-1, 8b; L = C6H11NC, nu NC 2173 cm-1, 8c). Reaction of 4 with N3SiMe3 gives [V(NS3)(NSiMe3)] (9), which is converted to [V(NS3)(NH)] (10) by hydrolysis and to [V(NS3)(NCPh3)] (11) by reaction with ClCPh3. Compound 10 is converted into 1 by [NMe4]OH and to [V(NS3)NLi(THF)2] (12) by LiNPri in THF. A further range of imido complexes [V(NS3)(NR4)] (R4 = C6H4Y-4 where Y = H (13a), OMe (13b), Me (13c), Cl (13d), Br (13e), NO2 (13f); R4 = C6H4Y-3, where Y = OMe (13g); Cl (13h); R4 = C6H3Y2-3,4, where Y = Me (13i); Cl (13j); R4 = C6H11 (13k)) has been prepared by reaction of 1 with R4NCO. The precursor complex [V(OS2)O(dipp)] (14) [OS2(2-) = O(CH2CH2S)2(2-)] has been prepared from [VO(OPri)3], Hdipp, and OS2H2. It reacts with NH2NMe2 to give [V(OS2)(NNMe2)(dipp)] (15) and with N3SiMe3 to give [V(OS2)(NSiMe3)(dipp)] (16). A second oxide precursor, formulated as [V(OS2)1.5O] (17), has also been obtained, and it reacts with SiMe3NHNMe2 to give [V(OS2)(NNMe2)(OSiMe3)] (18). The X-ray crystal structures of the complexes 2b, 2c, 4, 6, 7a, 8a, 9, 10, 13d, 14, 15, 16, and 18 have been determined, and the 51V NMR and other spectroscopic parameters of the complexes are discussed in terms of electronic effects.  相似文献   

14.
杨鹏  翁建全  谭成侠  王秀莲 《有机化学》2009,29(12):2000-2004
为了寻找生物活性良好的噻唑基丙烯腈类化合物, 利用2-[4-(2,6-二氟苯基)噻唑-2-基]乙腈(3)分别与取代氯甲酸酯4和取代苯基异氰酸酯6在碱存在下反应, 合成了8个2-[4-(2,6-二氟苯基)噻唑-2-基]-3-羟基-3-烃氧基丙烯腈化合物5和7个2-[4-(2,6-二氟苯基)噻唑-2-基]-3-羟基-3-取代苯胺基丙烯腈化合物7, 均为首次报道的丙烯腈类化合物. 化合物结构经1H NMR, IR, MS和元素分析表征. 初步生物活性测定结果表明, 在试验浓度下, 目标化合物均具有一定的杀虫和抑菌活性, 其中化合物5f和5h在100 mg/L浓度下对炭疽病菌的抑制率达95%; 化合物5g和7d在250 mg/L浓度下对棉红蜘蛛的致死率达85%.  相似文献   

15.
2-(2- and 3-Pyridyl)anilines (1, 2), 2,2-dimethyl-N-[2-(2- and 3-pyridyl)phenyl]propanamides (3, 4), and 2-, 3- and 4-(2-methoxyphenyl)pyridines (7-9) are readily synthesized using cross-coupling reactions. Whereas the amines 1, 2 undergo side reactions, the corresponding amides 3, 4 are deprotonated with lithium 2,2,6,6-tetramethylpiperidide (LTMP): the compound 3 at C6' under in situ quenching, and the compound 4 at C4'. When the ether 7 is subjected to the same reagent, lithiation occurs at C6'.  相似文献   

16.
[reaction: see text] Reaction of 5,5-dimethyl-3-pyrazolidinone (1) with 2-indanone (2) gave 5,5-dimethyl-2-(1H-indenyl-2)-3-pyrazolidinone (3) instead of the expected azomethine imine 4. Although reaction of 2-substituted 3-pyrazolidinones with acetylenedicarboxylates usually gives ring expansion products, such as 1,2-diazepines, treatment of 3 with dialkyl acetylenedicarboxylates (5, R = Me; 6 R = Et) resulted in the formation of rel-(7aR,12aS)-6,7-bis(alkoxycarbonyl)-3,4-dihydro-4,4-dimethyl-7aH-indano[1,2-b]pyrrolo[1,2-a]pyrimidin-2-ones (7, R = Me; 9, R = Et) as major products and 3,4-bis(alkoxycarbonyl)-7,7-dimethyl-2-(indenyl-2)-6,7-dihydro-2H,6H-1,2-diazepin-5-ones (8, R = Me: 10, R = Et) as minor products.  相似文献   

17.
The reaction of 2-mercapto-3-acetamido-5-(or 6-)chloropyridines with phenacyl bromide and substituted phenacyl bromides yielded 2-(phenacylmercapto)-3-acetamidopyridines, while the reaction of the former with -chloroacetoacetic ester yielded 2-(carbethoxyacyl-methylmercapto)-3-acetamidopyridlnes.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1391–1394, October, 1971.  相似文献   

18.
The title compound ethyl 2-(6-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-7-fluoro-3-oxo-2H-benzo[b][1,4]oxazin-4(3H)-yl) butanoate 3 was synthesized by the reaction of ethyl 2-(6-amino-7-fluoro-3-oxo-2H-benzo[b][1,4]oxazin-4(3H)-yl) butanoate with 4,5,6,7-tetraydrophthalic anhydride,and its structure was determined by X-ray single-crystal diffraction.The crystal belongs to the monoclinic system,space group P21/n with a = 9.3469(2),b = 16.7715(5),c = 13.7153(4) ,β = 104.9680(10)°,μ = 0.107 mm-1,Mr = 430.42,V = 2077.08(10) 3,Z = 4,Dc = 1.376 g/cm3,F(000) = 904,T = 296(2) K,R = 0.0508 and wR = 0.1478.  相似文献   

19.
The first syntheses of 2,2-dimethyl-7-(2'-methylbut-3'-en-2'-yl)-2H-chromen-6-ol (1) and 2-(3'-methylbut-2'-enyl)-5-(2'-methylbut-3'-en-2'-yl)-1,4-benzoquinone (2), novel prenylated quinone derivatives from the New Zealand brown alga Perithalia capillaris, are reported, in which the key steps are consecutive Claisen rearrangements that proceed with both high chemo- and regioselectivity.  相似文献   

20.
Interconversion of 3-(2-hydroxyphenyl)-1,2,4-oxadiazoles (1) and 3-acylaminobenzisoxazoles (2) was observed in the presence of base carboxylate anion, triethylamine, alkali hydroxide, alcoholate. With proton transferring reagents (carboxylate, triethylamine) the equilibrium 1?2 is dependent on the substituent R; with anionic reagents (hydroxy anion, ethoxyl anion) the less basic anion of 1 is preferred. Alcohol effects further transformation of this anion and the alcohol adduct anion (6) is subject both to hydrolysis and alcoholysis (7) to yield 3-amino-benzisoxazole (3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号