首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single bundles of carbon nanotubes have been selectively deposited from suspensions onto sub-micron electrodes with alternating electric fields. We show that it is possible to control the trapping of a single bundle by the use of Ag as electrode material which, unlike Au, strongly interacts with the carboxyl functionalized carbon nanotubes. Excellent alignment of the bundles between Au or Ag electrodes occurs at frequencies above 1 kHz, with superior contacts being formed with Ag electrodes. Received: 22 May 2002 / Accepted: 21 June 2002 / Published online: 28 October 2002 RID="*" ID="*"Corresponding author. Fax: +49-7247/82-6368, E-mail: ralph.krupke@int.fzk.de  相似文献   

2.
We have studied the resistance of single-wall carbon nanotubes measured in a four-point configuration with noninvasive voltage electrodes. The voltage drop is detected using multiwalled carbon nanotubes while the current is injected through nanofabricated Au electrodes. The resistance at room temperature is shown to be linear with the length as expected for a classical resistor. This changes at cryogenic temperature; the four-point resistance then depends on the resistance at the Au-tube interfaces and can even become negative due to quantum-interference effects.  相似文献   

3.
The temperature dependences of the number of nucleating single-walled and few-walled nanotubes and their diameter have been determined over a wide range of model parameters in the framework of the problem regarding the nucleation of carbon nanotubes from catalytic particles supersaturated with carbon. It has been demonstrated that, initially, individual nanotubes nucleate and grow and, then, they can be joined together into bundles. The mechanism of the formation of bundles in the proposed model follows from the quantum-chemical analysis of the steady-state growth of nanotubes at the level of release of individual carbon atoms. During the growth, the axis of the nanotube rotates about the normal to the surface of the catalytic particle. This leads to the cross-linking of nanotubes into bundles. The characteristic diagram of the regions of the existence of individual single-walled, few-walled, and multiwalled nanotubes and their bundles has been constructed as a function of the temperature and the size of catalytic particles.  相似文献   

4.
The Raman spectra of single-walled carbon nanotubes at temperatures up to 730 K and pressures up to 7 GPa have been measured. The behavior of phonon modes and the interaction between nanotubes in bundles have been studied. It has been found that the temperature shift of the vibrational G mode is completely reversible, whereas the temperature shift of radial breathing modes is partially irreversible and the softening of the modes and narrowing of phonon bands are observed. The temperature shift and softening of radial breathing modes are also observed when samples are irradiated by laser radiation with a power density of 6.5 kW/mm2. The dependence of the relative frequency Ω/Ω0 for G + and G ? phonon modes on the relative change A 0/A in the triangular lattice constant of bundles of nanotubes calculated using the thermal expansion coefficient and compressibility coefficient of nanotube bundles shows that the temperature shift of the G mode is determined by the softening of the C-C bond in nanotubes. An increase in the equilibrium distances between nanotubes at the breaking of random covalent C-C bonds between nanotubes in bundles of nanotubes is in my opinion the main reason for the softening of the radial breathing modes.  相似文献   

5.
Single-walled carbon nanotubes show linear elasticity under hydrostatic pressure up to 1.5 GPa at room temperature. The volume compressibility, measured by in situ synchrotron x-ray diffraction, has been determined to be 0.024 GPa (-1). Theoretical calculations suggest that single-walled carbon nanotubes are polygonized when they form bundles of hexagonal close-packed structure and the intertubular gap is smaller than the equilibrium spacing of graphite (002) (d = 3.35 A). It has also been determined that the deformation of the trigonal nanotube lattice under hydrostatic pressure is reversible up to 4 GPa, beyond which the nanotube lattice is destroyed.  相似文献   

6.
Nanotube-based field effect transistors can be prepared by laying carbon nanotubes over electrolithographically deposited gold electrodes on silicon chips. These devices can be used to study the physical properties of the nanotubes and to investigate the electrical behaviour of the contacts between the electrodes and the tubes. From the experience with these devices technologies of chemical self-assembly can be developed which will allow for integration densities higher than achievable by purely lithographic means.  相似文献   

7.
We report observations of acoustoelectric effects in carbon nanotubes. We excite sound in &mgr;m long ropes of single walled carbon nanotubes suspended between two metallic contacts by applying radio-frequency electric field. The sound is detected by measuring either the dc resistance of the tubes in a region of strong temperature dependence (in the vicinity of superconducting or metal-insulator transition), or their critical current. We show that, depending on the excitation power, the vibrations produce either electron heating or phase coherence breaking.  相似文献   

8.
Single-wall carbon nanotubes were synthesized on specified parts of oxidized silicon substrates by single acetylene burst CVD and studied with high-resolution scanning electron and scanning probe micro-scopes. The resistance of individual nanotubes and nanotube series was measured using devices fabricated by the deposition of Pd and Pd/Al electrodes on the obtained single-wall nanotubes. The contact potential difference between Pd electrodes and carbon nanotubes was measured in the Kelvin mode of a scanning probe microscope.  相似文献   

9.
唐元洪  林良武  郭池 《物理学报》2006,55(8):4197-4201
采用X射线吸收精细结构光谱探索性地研究了多壁碳纳米管束.在多壁碳纳米管束不同入射角的X射线吸收精细结构光谱中,观察到C—H σ*共振峰强度随入射角的变化而发生变化.在常温常压下出现C—H键可能与多壁碳纳米管束中存在缺陷有关,缺陷数量越大C—H σ*共振峰的强度越大.光谱中C—C π*和C—C σ*共振峰强度的变化趋势都不同于C—H σ*共振峰,这有力地证明了在常温常压条件下氢原子是吸附在多壁碳纳米 关键词: X射线吸收精细结构光谱 碳纳米管 储氢 化学吸附  相似文献   

10.
Using chemical vapor deposition methods to prepare carbon nanotubes growing in situ on a carbon felt, graphene and polyaniline were applied to the carbon felt for modifying carbon nanotubes. Microbial fuel cell was constructed with graphene/polyaniline-modified carbon nanotubes as anode, graphite as cathode, and glucose solution as substrate. The effects of electrodes, substrate concentration, and temperature on the properties of microbial fuel cell have been studied. At 38 °C using glucose solution of 1450 mg L?1 and external resistance of 2500 Ω, the optimum output voltage of 687 mV and removal rate of 83% for chemical oxygen demand were obtained in the microbial fuel cell. The prepared nanomaterials are stable and reusable.  相似文献   

11.
单壁碳纳米管力学行为的数字散斑相关法实验研究   总被引:4,自引:0,他引:4  
通过直接单向拉伸超长单壁碳纳米管束长绳,首次借助高精度数字散斑相关法,并结合显维放大技术,测量了单壁碳纳米管的弹性模量和拉伸强度。试验中观察了单壁碳纳米管束长绳的断裂过程。单壁碳纳米管束长绳通过改进的化学气相沉积技术生成。试验得到单壁碳纳米管的平均杨氏模量为129.0±70.3GPa,平均拉伸强度为1.95±0.56GPa,低于计算值和先前其它文献的试验值。  相似文献   

12.
13.
Superconducting properties of carbon nanotubes   总被引:1,自引:0,他引:1  
Metallic single wall carbon nanotubes have attracted much interest as 1D quantum wires combining a low carrier density and a high mobility. It was believed for a long time that low temperature transport was exclusively dominated by the existence of unscreened Coulomb interactions leading to an insulating behavior at low temperature. However experiments have also shown evidence of superconductivity in carbon nanotubes. We distinguish two fundamentally different physical situations. When carbon nanotubes are connected to superconducting electrodes, they exhibit proximity induced superconductivity with supercurrents which strongly depend on the transmission of the electrodes. On the other hand intrinsic superconductivity was also observed in suspended ropes of carbon nanotubes and recently in doped individual tubes. These experiments indicate the presence of attractive interactions in carbon nanotubes which overcome Coulomb repulsion at low temperature, and enables investigation of superconductivity in a 1D limit never explored before. To cite this article: M. Ferrier et al., C. R. Physique 10 (2009).  相似文献   

14.
The via interconnects are key components in ultra-large scale integrated circuits(ULSI).This paper deals with a new method to create single-walled carbon nanotubes(SWNTs) via interconnects using alternating dielectrophoresis(DEP).Carbon nanotubes are vertically assembled in the microscale via-holes successfully at room temperature under ambient condition.The electrical evaluation of the SWNT vias reveals that our DEP assembly technique is highly reliable and the success rate of assembly can be as high as 90%.We also propose and test possible approaches to reducing the contact resistance between CNT vias and metal electrodes.  相似文献   

15.
The resistance of single-wall carbon nanotube (SWCN) ropes or mats, and some individual tubes, typically shows a crossover from non-metallic to metallic temperature dependence as temperature increases. This systematic pattern is consistent with a series heterogeneous model involving metallic resistance and tunnelling through barriers such as defects and inter-rope contacts. The metallic resistivity term increases linearly with temperature for the ropes or mats, but faster for the individual nanotubes. In contrast to the almost vanishing thermoelectric power expected from electronic band structure calculations, the measured values for mats or films (including recent measurements in a vacuum) are even larger than for typical metals. The thermopower increases with temperature as for metals, but has a characteristic non-linear shape. This temperature dependence can be modelled, for example, with parallel conduction in metallic and semiconducting tubes, but the size of the metallic thermopower required is anomalously large.  相似文献   

16.
Adsorption of hydrogen gas was tested in microporous doped carbons: activated carbon (1600 m2/g) and single wall carbon nanotubes (SWNTs). The isotherms of adsorption of LiC18 and KC24 doped microporous activated carbons were determined in the range [0–30 bar] at room temperature and 77 K. The chemisorption ratio observed at room temperature increases with increasing the alkali/carbon rate. The isotherm profiles of doped activated carbon at 77 K show no clear enhancement of the sorption ratio compared to the raw activated carbon.The adsorption sites of potassium doped SWNTs with closed end were determined by neutron diffraction experiment using deuterium gas. The K-doped SWNTs were found only slightly intercalated by K ions so that empty cavities are preserved in between the tubes. At room temperature, the chemisorption of deuterium was not observed in doped SWNTs bundles, but only in the KC8 graphite intercalation compound impurities. At low temperature, the isotherms analysis and neutron diffraction experiments have shown that D2 molecules are physisorbed in the free interstitial voids in between the tubes within the bundles.  相似文献   

17.
This Letter reports the laser energy dependence of the Stokes and anti-Stokes Raman spectra of carbon nanotubes dispersed in aqueous solution and within solid bundles, in the energy range 1.52-2.71 eV. The electronic transition energies (E(ii)) and the radial breathing mode frequencies (omega(RBM)) are obtained for 46 different (18 metallic and 28 semiconducting) nanotubes, and the (n,m) assignment is discussed based on the observation of geometrical patterns for E(ii) versus omega(RBM) graphs. Only the low energy component of the E(M)(11) value is observed from each metallic nanotube. For a given nanotube, the resonant window is broadened and down-shifted for single wall carbon nanotube (SWNT) bundles compared to SWNTs in solution, while by increasing the temperature, the E(S)(22) energies are redshifted for S1 [(2n+m) mod 3=1] nanotubes and blueshifted for S2 [(2n+m) mod 3=2] nanotubes.  相似文献   

18.
Single-walled carbon nanotubes (SWNTs) were synthesized by pyrolyzing methane (CH4) at a temperature of 900℃ on SiO2 substrates pre-coated with iron nano-particles. Electrical contacts were fabricated onto one of the SWNTs by using an electron beam lithography process. Coulomb blockade and single-electron tunnelling characters were found at low temperatures, indicating that the SWNT in-between the electrodes forms a quantum dot. It is found that the Coulomb gap of the quantum dot is about 8.57 meV, and the factor \alpha , which converts the gate voltage to the true electrostatic potential shift, is around 200 for this device.  相似文献   

19.
Semiconducting single-walled carbon nanotubes are studied in the diffusive transport regime. The peak mobility is found to scale with the square of the nanotube diameter and inversely with temperature. The maximum conductance, corrected for the contacts, is linear in the diameter and inverse temperature. These results are in good agreement with theoretical predictions for acoustic phonon scattering in combination with the unusual band structure of nanotubes. These measurements set the upper bound for the performance of nanotube transistors operating in the diffusive regime.  相似文献   

20.
The nonlinear bulk compressibility of entangled multiwalled carbon nanotubes is studied. The analogy with textile fibre assemblies is explored by means of the well established van Wyk model. In view of the small diameter of the nanotubes, the possible effect of adhesive van der Waals interactions at tube-tube contacts is analysed. It is found, however, that the contribution of adhesive contacts to the bulk stress should be negligible. Compression experiments are performed on multi-walled carbon nanotubes and show that van Wyk's model is able to describe the response, although the values of the dimensionless parameter k of van Wyk's model were lower than expected. There is indeed no indication that van der Waals interactions play any significant role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号