首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Differential scanning calorimetric measurements in the early stage of isothermal crystal growth of polyethylene oxide are analysed in the light of irreversible thermodynamics. An accurate evaluation of the equilibrium melting temperature is done by fitting the thermograms obtained at different undercoolings and referring to the activation energy values already known from the literature. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

2.
We have used fluorescence spectroscopy methods to show that imidacloprid and its structural analogs form complexes with human serum albumin (HSA). The nature of the spectral changes in the ligand×protein systems and the calculated complexation parameters suggest that these low molecular weight compounds mainly bind to a specific section of the protein molecule, near the tryptophan residue in the 214 position of the polypeptide chain. We have found that the association constants are on the order of 104 M−1, and the affinity of the ligands for HSA varies in the series 6-chloronicotinic acid > 6-methoxynicotinic acid = imidacloprid > the keto analog of imidacloprid. The major contribution to the complexation energy probably comes from hydrophobic interaction forces with participation of the aromatic pyridine ring of the ligands, while additional enhancement of ligand-protein affinity can be provided by the nitroimine group of imidacloprid. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 6, pp. 859–866, November–December, 2008.  相似文献   

3.
Detection and identification of low abundance biomarker proteins is frequently based on various types of membrane-based devices. Lowering of the protein detection limits is vital in commercial applications such as lateral flow assays and in Western blots widely used in proteomics. These currently suffer from insufficient detection sensitivity and low retention for small 2–5 kDa proteins. In this study, we report the deposition of two types of metal nanoparticles: gold colloids (50–95 nm diameter) and silver fractals onto a range of commonly used types of membranes including polyvinylidene fluoride (PVDF). Due to strong affinity of proteins to noble metals, such modified membranes have the potential to effectively capture trace proteins preventing their loss. The membranes modified by metal particles were characterized optically and by SEM. The membrane performance in protein dot blots was evaluated using the protein—fluorophore conjugates Deep Purple-bovine serum albumin and fluorescein—human serum albumin. We found that the metal nanoparticles increase light extinction by metals, which is balanced by increased fluorescence, so that the effective fluorescence signal is unchanged. This feature combined with the capture of proteins by the nanoparticles embedded in the membrane increases the detection limit of membrane assays.  相似文献   

4.
We present results from an investigation of the binding ability of the main transport proteins (albumin, lipoproteins, and α-1-acid glycoprotein) of blood plasma from patients at different stages of liver cirrhosis by the fluorescent probe method. We used the hydrophobic fluorescent probes anionic 8-anilinonaphthalene-1-sulfonate, which interacts in blood plasma mainly with albumin; cationic Quinaldine red, which interacts with α-1-acid glycoprotein; and neutral Nile red, which redistributes between lipoproteins and albumin in whole blood plasma. We show that the binding ability of albumin and α-1-acid glycoprotein to negatively charged and positively charged hydrophobic metabolites, respectively, increases in the compensation stage of liver cirrhosis. As the pathology process deepens and transitions into the decompensation stage, the transport abilities of albumin and α-1-acid glycoprotein decrease whereas the binding ability of lipoproteins remains high. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 4, pp. 507–511, July–August, 2007.  相似文献   

5.
The use of hydrophobic fluorescent probe ABM (benzanthrone derivative) and albumin autofluorescence allowed show conformational alterations in Chernobyl clean-up workers blood plasma. Results obtained in 1996–1997 suggest that acidic expansion of plasma albumin takes place. Latest data (2006–2008) result in splitting of albumin alterations onto two stages - acidic expansion and N-F transition. The N-F transition is accompanied by the blue shift of fluorescence spectra and dehydration of tryptophanyl region of albumin molecule. In 2007 obtained.patterns of ABM spectra had never been previously seen in examined healthy individuals or patients with tuberculosis, multiple sclerosis, rheumatoid arthritis, etc. Patterns of ABM fluorescence spectra are associated with conformational changes of blood plasma albumin. The use of probe ABM and albumin auto-fluorescence allowed show conformational alterations in albumin of Chernobyl clean-up workers blood plasma. It is necessary to note that all investigated parameters significantly differ in observed groups of patients. These findings reinforce our understanding that the blood plasma albumin is a significant biological target of radiation. It may be concluded that fluorescence characteristics are representative of radiation induced albumin alterations and its carrier function.  相似文献   

6.
This work describes the synthesis of a thiolated polyethylene oxide that self-assembles on gold to create a non-fouling surface. Thiolated polyethylene oxide was synthesised by reacting 16-mercaptohexadecanoic acid with polyethylene glycol mono methyl ether. The coverage of the thiolated polyethylene oxide on gold was studied by cyclic voltammetry, and the modified surfaces were characterised by X-ray photoelectron spectroscopy and ellipsometry. Protein resistance was assessed using quartz crystal microbalance. Results showed a non-fouling character produced by the thiolated polyethylene oxide. The synthesised product was used as the passivation layer on nano-patterned surfaces consisting of arrayed nano-spots, fabricated by plasma based colloidal lithography. The specific adsorption of anti-bovine serum albumin in the mercaptohexadecanoic acid spots was verified by atomic force microscopy.  相似文献   

7.
A novel and sensitive immunonanogold resonance scattering (RS) spectral probe was obtained for rapid detection of microalbumin (Malb), using 10 nm gold nanaoparticle to label goat anti-human Malb. It was based on that the gold-labeled anti-Malb took place nonspecific aggregation and exhibited a strong RS peak at 577 nm in pH 5.2 C6H8O7–Na2HPO4 buffer solution containing polyethylene glycol (PEG), and the immunocomplex formed after specific reaction of gold-labeled anti-Malb with Malb, which led to a decrease in the intensity of RS peak at 577 nm considerably. The decreased RS intensity at 577 nm (ΔI 577nm) was linear to the concentration of Malb in the range of 4–128 ng/mL, with a detection limit of 3.2 ng/mL. The proposed method was applied to detect Malb in healthy human urine samples with satisfactory results.  相似文献   

8.
Mixed silica–calcite matrices were prepared by developing a “low” temperature (sol–gel) method in presence of several biocompatible polymers, thus providing samples with adequate porosity for the flow of biological fluids and also mechanically robust. In order to analyse and characterise the sample’s microenvironments, the highly solvatochromic probe Nile red was used, which enabled the role of polymer addition upon local environmental effects in the host media to be elucidated. The polymers used were polyethylene glycol, polymethylmethacrylate and polyethylene. Each matrix was also characterized with respect to microstructure, morphology and pore size via the use of X-ray diffractometry and scanning electron microscopy. The results show that is was possible to obtain, in a controlled way, mixed silica–calcite matrices with a wide range of porosities (important if the material is to be used for scaffold or drug release applications, for example). The spectroscopic behaviour of Nile red when incorporated has confirmed the existence of distinct and specific local polarities within each type of matrix that may determine to a large extent the mechanism of interaction between these matrices and biological molecules. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
We have studied the interaction between polycyclic aromatic hydrocarbons (pyrene and anthracene) with human serum albumin (HSA) and human blood plasma. We have shown that the increase in the fluorescence intensity and the decrease in the polarity index of pyrene on going from an aqueous solution to a pH 7.4 buffer solution of HSA suggests that polycyclic aromatic hydrocarbons are localized in the hydrophobic microphase of the proteins. The increase in the fluorescence intensity for anthracene and pyrene, and also the decrease in the polarity index of pyrene on going from HSA to blood plasma is connected with the fact that polycyclic aromatic hydrocarbons can bind both to plasma proteins and to plasma lipids. When sodium dodecyl sulfate (SDS) is added to the blood plasma in a concentration greater than the critical micelle concentration, we observe an increase in the fluorescence intensity and the polarity index of pyrene. We hypothesize that this is connected with localization of pyrene near the interface between the hydrophobic and hydrophilic phases of the protein-SDS system. We have established that SDS leads to a change in the structure of blood plasma proteins and promotes escape of polycyclic aromatic hydrocarbons from the protein globules. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 3, pp. 379–382, May–June, 2008.  相似文献   

10.
From analysis of the fluorescence spectra of eosin molecules in a solution with human serum albumin (HSA), we have obtained information about the dynamics of protein conformational rearrangements during denaturing of the protein when treated with sodium dodecyl sulfate (SDS) for different pH values of the solution. We hypothesize that HSA denaturing in the presence of SDS occurs in two stages: the first stage is loosening of the protein globules, and the second stage is complete unfolding of the protein molecules. We have shown that denaturating of the protein in the presence of SDS passes through both stages for a solution pH below the isoelectric point of the albumin, while the denaturing stops in the first stage for a solution pH above the isoelectric point of the albumin. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 5, pp. 661–665, September–October, 2006.  相似文献   

11.
Stress relaxation after steady flow has been measured with a Weissenberg rheogoniometer for some samples of polystyrene and high-density polyethylene; the same samples have been characterized by column fractionation, gel permeation chromatography, and osmometry.

A method suggested by Menefee and Peticolas has been used to obtain the molecular weight distribution from relaxation data, and the results have been compared with those obtained through the solution measurements. The distributions obtained by the two methods, as represented by the cumulative Z distribution versus the logarithm of molecular weight, are very similar in shape; but, in the case of polyethylenes, the distributions obtained by stress relaxation are found shifted by a factor of 2 toward high molecular weights.  相似文献   

12.
在聚乙二醇-2000(PEG)-硫酸铵-食用色素双水相体系中,研究了PEG相中食用色素与蛋白质复合物光谱行为。实验了溶液酸度,盐浓度,PEG用量,反应时间,反应温度,共存物质等对体系测定的影响。结果表明,在pH 8的缓冲溶液条件下,樱桃红(BS)与人血清白蛋白(HSA)复合物的最大吸收在541 nm处,比单纯樱桃红红移13 nm,复合物表观摩尔吸光系数为9.4×104 L·mol-1·cm-1,用摩尔比法求得最大结合数为40,蛋白质浓度在0~21.07 mg·L-1范围内具有线性关系。用加入不同类型表面活性剂方法,探讨了食用色素樱桃红与蛋白质之间的作用机理。  相似文献   

13.
Magnetic supports are tested for use in batch affinity capture of proteins. Two types of magnetic polymer composites were used for solid phase synthesis and for the batch affinity chromatography of folate binding protein from a protein mixture. Gly-Gly-L-Methotrexate as well as other analogs were synthesized on magnetic supports consisting of either polyoxyalkyleneamine grafted onto polystyrene beads or a copolymer of polyethylene glycol dimethylacrylamide (PEGA). Both supports incorporated within their matrix sub-micron particles of paramagnetic magnetite. The peptide-methotrexate analogs were attached to the magnetic supports via a photocleavable linker. The bound methotrexate-peptide analogs were equilibrated with a protein mixture consisting of bovine albumin, chicken albumin, folate binding protein, lysozyme, lactoferrin and lactoperoxidase precursor in phosphate buffered saline (PBS) and then after magnetically separating and washing the supports of any unbound components the bound protein was removed either through the photocleavage of the tethered methotrexate-peptide ligand or via exchange with soluble methotrexate. In all cases, the photocleavage or exchange with soluble methotrexate released folate binding protein as the major affinity captured protein. Of the two magnetic supports tested, the PEGA based support was found to be superior to the polyoxyalkyleneamine grafted polystyrene support and comparable to beaded agarose in releasing bound folate binding protein. Of the two methods for removing bound protein, photocleavage of the covalently attached ligand was found to release exclusively folate binding protein as opposed to exchange with soluble methotrexate which released residual amounts of the non-specifically bound proteins bovine and chicken albumin, in addition to folate binding protein. Thus, use of the PEGA based magnetic support in conjunction with a photocleavable linker should help facilitate the automation of multiple parallel affinity chromatography for proteomics applications.  相似文献   

14.
Samples from Cellulose triacetate (CTA) sheets were irradiated with electron beam in the dose range 10–200 kGy. Non-isothermal studies were carried out using thermogravimetric analysis (TGA) to obtain the activation energy of thermal decomposition for CTA polymer. The CTA samples decompose in one main break down stage. The results indicate that the irradiation by electron beam in the dose range 80–200 kGy increases the thermal stability of the polymer samples. Also, the variation of melting temperatures with the electron dose has been determined using differential thermal analysis (DTA). The CTA polymer is characterized by the appearance of one endothermic peak due to melting. It is found that the irradiation in the dose range 10–80 kGy causes defects generation that splits the crystals depressing the melting temperature, while at higher doses (80–200 kGy), the thickness of crystalline structure (lamellae) is increased, thus the melting temperature increases. In addition, the transmission of these samples in the wavelength range 200–2500 nm, as well as any color changes, were studied. The color intensity ΔE* was greatly increased on increasing the electron beam dose, and accompanied by a significant increase in the blue color component.   相似文献   

15.
Polyvinyl alcohol?polyethylene glycol?silver (PVA–PEG–Ag) nanocomposites were prepared by adding Ag nanoparticles with 5?wt.% to the (PVA–PEG) blend. The films of 0.05?mm thickness were prepared by the casting method. Samples from these films were irradiated with infrared (IR) laser fluences ranging from 1.7 to 15?J/cm2. The effect of IR laser radiation on the structural properties of PVA–PEG–Ag has been investigated using X-ray diffraction and Fourier transform infrared spectroscopy. The results indicate that the crosslinking dominates due to laser exposure at the fluence range 1.7–15?J/cm2, reducing the ordering character of the nanocomposite samples. Also, the variation of transition temperatures with the laser fluence has been determined using differential thermal analysis. The nanocomposite thermograms were characterized by the appearance of an endothermic peak due to melting, and were found to be dependent on the laser fluence. In addition, the color changes due to laser irradiation were computed using the transmission data. It is found that the color difference is largely dependent on the proportions of the red color component.  相似文献   

16.
The formation of amyloid aggregates by association of peptides into ordered structures is hallmark of certain neurodegenerative disorders. Exploring the effect of specific nanoparticles on the formation of amyloid fibrils may contribute toward a mechanistic understanding of the aggregation processes, leading to design nanoparticles that modulate the formation of toxic amyloid plaques. Uniform maghemite (γ-Fe2O3) magnetic nanoparticles, containing fluorescein covalently encapsulated within (F-γ-Fe2O3), were prepared. These F-γ-Fe2O3 nanoparticles of 14.0 ± 4.0 nm were then coated with human serum albumin (HSA) via a precipitation process. Covalent conjugation of the spacer arm succinimidyl polyethylene glycol succinimidyl ester (NHS–PEG–NHS) to the F-γ-Fe2O3~HSA nanoparticles was then accomplished by interacting the primary amine groups of the HSA coating with excess NHS–PEG–NHS molecules. Covalent conjugation of the peptides amyloid-β 40 (Aβ40) or Leu-Pro-Phe-Phe-Asp (LPFFD) onto the surface of the former fluorescent nanoparticles was then performed, by interacting the terminal activated NHS groups of the PEG derivatized F-γ-Fe2O3~HSA nanoparticles with primary amino groups of the peptides. Kinetics of the Aβ40 fibrillation process in the absence and presence of varying concentrations of the Aβ40 or LPFFD conjugated nanoparticles were also elucidated. The non-peptide conjugated fluorescent nanoparticles do not affect the Aβ40 fibrillation process significantly. However, the Aβ40-conjugated nanoparticles (F-γ-Fe2O3~HSA–PEG–Aβ40) accelerate the fibrillation process while the LPFFD-conjugated nanoparticles (F-γ-Fe2O3~HSA–PEG–LPFFD) inhibit it. By applying MRI and fluorescence imaging techniques simultaneously these bioactive fluorescent magnetic iron oxide nanoparticles can be used as an efficient tool to study and control the Aβ40 amyloid fibril formation process.  相似文献   

17.
We report a simple and novel method for surface biofunctionalization onto recently reported Ni80Fe20 permalloy nanoparticles (~71 nm) and the immobilization of a model protein, IgG from human serum. The strategy of protein immobilization involved attachment of histidine-tagged streptavidin to the Ni80Fe20 nanoparticles via a non-covalent ligand binding followed by biotinylated human IgG binding on the nanoparticle surface using the specific high affinity avidin–biotin interaction. The biofunctionalization of Ni80Fe20 permalloy nanoparticles was confirmed by Fourier Transform InfraRed (FTIR) spectroscopy and protein denaturing gel electrophoresis (lithium dodecyl sulfate-polyacrylamide gel electrophoresis, LDS-PAGE). This protocol for surface functionalization of the novel nanometer-sized Ni80Fe20 permalloy particles with biological molecules could open diverse applications in disease diagnostics and drug delivery.  相似文献   

18.
Summary Calorimetric measurements by DSC technique have been made in pure polyethylene glycol (PEG) and oxide (PEO) polymers having a very wide molecular-weight range (from 600 to 4000 000) and in PEO (MW 600 000)-NaSCN complexes. It was found that the melting temperature increases with increasing molecular weight, ranging from 293 K in the polymer with MW=600 to 340 K in that with MW=4000 000. The behaviour of the heats of fusion with increasing molecular weight reflects the trend expected in systems, in which the increase of the main chain length produces a relevant growth of the degree of crystallinity. A distinct maximum of the heat of fusion has been found at about MW=10000, this result being an evidence of the high amount of crystalline regions building up the structure of that system. The dependence of the melting temperature on molecular weight has been nicely accounted for by using the expression of Flory, deduced from the statistical theory of polymers having the most probable molecular-weight distribution. The addition of sodium thiocyanate to PEO modifies the morphology of the host polymer and, for salt concentrations higher than 0.03 molar fraction, gives rise to the formation of a PEO-salt crystalline complex characterized by a high melting temperature. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

19.
Resveratrol is a natural phytoalexin with pharmacologic effects on several human diseases: carcinogenesis, coronary heart disease and neurodegenerative disease. Due to its poor water solubility, resveratrol must be bound to proteins to keep it at a high concentration in serum. In our work, the bindings of resveratrol to plasma proteins, human serum albumin (HSA) and hemoglobin (Hb), have been investigated systematically by fluorescence quenching technique, synchronous fluorescence, UV–vis absorption spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling method. The fluorescence data show that the binding of resveratrol to HSA or Hb is a static quenching procedure and each protein has only one binding site for the drug. The binding constant of resveratrol to HSA is larger than that of resveratrol to Hb at corresponding temperature, which indicates that the affinity of HSA toward the drug is higher than that of Hb. The CD spectroscopy indicates that the secondary structures of the proteins are changed in the presence of resveratrol with the reduction of α-helices, which decreased about 18.75% for HSA and 9.43% for Hb at the drug to proteins molar ratio of 2. Thermodynamic analysis and molecular modeling suggest that hydrophobic interaction plays a major role in the binding of resveratrol to HSA, and hydrogen bonding is the mainly binding force in the binding of resveratrol to Hb. The study of molecular modeling shows that resveratrol is located in the hydrophobic cavity between subdomain IB and IIA of HSA (the entrance of site I), or located in the central cavity of Hb (partial to the subunit A).  相似文献   

20.
An investigation is made of the absorption, fluorescence, and fluorescence excitation spectra of human blood serum whole and diluted with a sodium-phosphate buffer solution. Time characteristics of the longwave serum luminescence are obtained. The quantum yield of background fluorescence upon excitation by radiation with λexc=500 is found to be 0.5%. Institute of Molecular and Atomic Physics of the National Academy of Sciences of Belarus, 70, F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 3, pp. 433–436, May–June, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号