首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过3-巯丙基三乙氧基硅烷(METMS)将氧化石墨烯(GO)固载到玻碳电极(GCE)表面, 用电化学方法还原GO制备石墨烯修饰玻碳电极(rGO-METMS-GCE). 利用傅里叶变换红外光谱(FTIR)、 拉曼光谱(Raman)、 扫描电子显微镜(SEM)和原子力显微镜(AFM)等技术对GO和rGO-METMS-GCE的结构和表面形貌进行表征. 采用循环伏安(CV)和差分脉冲溶出伏安(DPV)法研究了rGO-METMS-GCE对多巴胺(DA)的电催化氧化性能及反应机理. 结果表明, 与裸GCE相比, DA在rGO-METMS-GCE电极上的氧化还原峰电流(ipaipc) 增大4倍, 氧化峰电位负移106 mV, 氧化峰与还原峰电位差(ΔEp)从202 mV降低至66 mV, DA电化学氧化可逆性明显改善, 表明rGO-METMS-GCE对DA电化学氧化具有显著电催化作用. DA在rGO-METMS-GCE上的反应机理为单电子转移过程.  相似文献   

2.
碳纳米管修饰电极对多巴胺和抗坏血酸的电催化氧化   总被引:18,自引:0,他引:18  
研究了碳纳米管修饰玻碳电极 (NTCME)的制备方法及对多巴胺 (DA)和抗坏血酸 (AA)的电催化氧化作用。在磷酸盐缓冲溶液 (PBSpH 7.4)中 ,以NTCME为工作电极时 ,DA与AA的氧化电位分别为 0 .2 6和 0 .0 1V(vs.SCE) ,比在裸玻碳电极 (GC)上分别降低了 0 .0 7和 0 .6 2V。NTCME能消除DA与AA共存时测定的相互干扰。利用二阶导数卷积伏安法测定 ,DA与AA分别在 2 .0 0× 10 - 6~ 3.84× 10 - 4 和 7.99× 10 - 5~ 3.6 6× 10 - 3 mol L浓度范围内 ,峰高与浓度呈线性关系 ;检出限分别为 1.90× 10 - 7和 5 .96× 10 - 5mol L。  相似文献   

3.
利用循环伏安法将L-苏氨酸聚合修饰在玻碳电极表面, 制成聚L-苏氨酸修饰电极. 实验表明, 该电极对多巴胺和肾上腺素都有较好的催化氧化效果. 运用循环伏安法详细研究了修饰电极的电化学性质. 在pH 2.5的磷酸盐缓冲溶液(PBS)中, 肾上腺素的电子传递系数为0.51, 表观反应速率常数为1.33 s-1; 在pH 7.5的PBS中, 多巴胺在电极上产生一对氧化还原峰, 多巴胺在电极上的电子传递系数为0.60, 表观反应速率常数为0.92 s-1. 该修饰电极对多巴胺和肾上腺素能够进行同时测定, 还原峰电流与多巴胺和肾上腺素浓度分别在1.0×10-6-5.0×10-4 mol·L-1和3.0×10-6-1.0×10-4 mol·L-1范围内呈现良好的线性关系.  相似文献   

4.
聚溴酚蓝修饰电极对多巴胺的电催化作用及伏安测定   总被引:4,自引:1,他引:4  
在含溴酚蓝的磷酸缓冲液中,用循环伏安法在玻碳电极上制备聚合物薄膜。采用循环伏安法研究多巴胺在聚溴酚蓝修饰电极上的电化学行为,实验结果表明聚溴酚蓝修饰电极对多巴胺的氧化具有良好的电催化性能。在1.0~10μmol/L范围内,多巴胺浓度与其线性扫描伏安峰电流呈良好的线性关系,相关系数为0.9999,平均回收率为100.2%。该方法可用于盐酸多巴胺注射液中的多巴胺的测定。  相似文献   

5.
采用涂层和嵌入修饰法 ,将羧基化多层碳纳米管制成两种修饰电极。以多巴胺 (DA)和抗坏血酸(AA)为模型化合物 ,研究了两种修饰电极对DA和AA共存时的电催化作用。结果表明 :嵌入的方式比涂层的方式显示了更多的优点。嵌入修饰电极不仅使峰电流增加 ,并且使两者共存时的氧化峰位分离达 16 0mV ,同时 ,该电极对DA的响应灵敏于AA ,这有利于在大量的AA存在下实现对DA的测定。在 1× 10 - 3 mol/L的AA的存在下 ,还原电流的一阶导数与DA浓度在 5× 10 - 7~ 1× 10 - 4 mol/L范围内呈良好的线性关系 ;检测下限达 1× 10 - 7mol L。  相似文献   

6.
用滴涂法和两步电化学聚合法制备了一种石墨烯夹心式聚中性红修饰电极(PNR/GN/GCE),并用循环伏安法、微分脉冲伏安法和交流阻抗法表征了该复合物膜的电化学行为。石墨烯夹心式聚中性红复合物薄膜提高了电极表面的电子转移速率,薄膜结合牢固,电催化氧化作用明显。在p H 5的磷酸缓冲溶液中,选择扫速0.1 V/s,多巴胺的氧化峰电位相比裸玻碳电极负移了103 m V,峰电流增加7倍,检出限达到4.9×10-9mol/L(S/N=3),氧化峰电流与多巴胺浓度在1.6×10-8~2.0×10-6mol/L范围内现良好的线性关系,相关系数R=0.994。  相似文献   

7.
用循环伏安法在石墨电极和ITO导电玻璃上制备了藏红T聚合物薄膜修饰电极,研究了电聚合过程及循环伏安性质.聚藏红T膜修饰石墨电极在pH 6.81的PBS中循环扫描,有两对氧化还原峰,峰电位分别为Ep,a(P1)=-0.5 V,Ep,c(P1)=-0.575 V,Ep,a(P2)=-0.36 V,Ep,c(P2)=-0.425 V,而且聚合物较稳定.测定了聚藏红T膜的可见光谱性质.实验表明,聚藏红T膜修饰电极对多巴胺有明显的催化作用.  相似文献   

8.
聚苯胺修饰电极上的电催化   总被引:5,自引:0,他引:5  
研究了聚苯胺修饰电极对抗坏血酸,多巴胺,溴,铊及铁离子的电催化作用。实验分析了影响电催化的几个因素,并通过控制聚合方法,制得了电催化性质相异的聚苯胺修饰电极。  相似文献   

9.
多壁碳纳米管修饰电极对核黄素的电催化研究   总被引:4,自引:0,他引:4  
碳纳米管具有导电性和完整的表面结构,因而它可用作一种良好的电极材料。核黄素(维生素B2,RF)是黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)的组成部分。而FMN和FAD是生命体中重要的辅酶,也是多种重要脱氢酶的辅酶,在线粒体呼吸链中起着传递电子和质子的作用。FMN和FAD分子中传递电子的功能部分与核黄素相同,均为异吡咯嗪环。本文用电化学方法研究了核黄素的电化学性质。  相似文献   

10.
通过多巴胺(DA)的自聚反应在玻碳电极(GCE)表面修饰一层聚多巴胺(PDA)膜,对DA的自聚条件和方波溶出伏安法测试条件进行优化。优化的实验条件为:以2 mg/m L DA的Tris-HCl(0.01 mol/L,p H8.5)溶液为自聚溶液,自聚反应时间为2.5 h,铅的测试底液为0.1 mol/L HCl溶液,修饰电极在铅测试溶液中于-1.0 V富集300 s时,溶出峰的峰形好,且峰电流大。峰电流与铅浓度分别在0.1~1.0μg/L和1.0~10.0μg/L范围内呈良好的线性关系,检出限为0.016 5μg/L。实验结果表明,该聚多巴胺修饰电极制备简单、灵敏度高、成本低,可用于加碘盐、纯净水和自来水中痕量铅的测定。  相似文献   

11.
将多壁碳纳米管(MWNT)分散在疏水性表面活性剂双十六烷基磷酸(DHP)溶液中形成稳定、均相的分散液,然后制备多壁碳纳米管-DHP复合膜修饰玻碳电极(MWNT-DHP/GCE).应用方波伏安法研究了沙丁胺醇在修饰电极上的电化学行为,结果表明,碳纳米管复合膜修饰电极对沙丁胺醇的氧化有良好的电催化活性,其氧化反应为一电子一质子过程,氧化电位比裸玻碳电极负移40 mV,峰电流增加了4.5倍.在最佳测试条件下,氧化峰电流与沙丁胺醇浓度在8.3×10-7~3.3×10-6mol/L范围内呈良好线性关系,开路富集2min,检出限达1.8×10-7mol/L.该修饰电极具有良好的重现性、稳定性.  相似文献   

12.
通过循环伏安法(CV)制备了芦丁修饰电极,研究多巴胺(DA)在修饰电极上的电化学行为.结果表明,芦丁修饰膜对DA的氧化有明显的催化作用,并且可以消除抗坏血酸(AA)对DA测定的干扰.DA的浓度在1.0×10-7~9.5×10-6 mol/L范围内与其氧化峰电流呈线性关系,相关系数为0.9996,检出限为1.0×10-8 mol/L.将该修饰电极用于注射液样品中DA的测定,结果表明该修饰电极可用于实际样品分析.  相似文献   

13.
14.
聚苯胺薄膜修饰电极对抗坏血酸的电催化氧化   总被引:12,自引:0,他引:12  
本文表明聚苯胺(PAn)薄膜修饰电极对水溶液中的抗坏血酸(AH_2)在较宽的pH范围和较宽的浓度范围内均有良好的电催化氧化作用, 为EC平行催化过程。利用旋转圆盘电极(RDE)进行了催化过程动力学分析, 求出了催化反应动力学参数。在抗坏血酸浓度10~(-2)~10~(-6) mol·L~(-1)范围内, 催化峰电流与AH_2浓度均成良好的线性关系, 且PAn薄膜修饰电极具有很好的稳定性, 有应用分析抗坏血酸的意义。  相似文献   

15.
新法制备铁氰化钴修饰玻碳电极及多巴胺的电催化氧化   总被引:4,自引:0,他引:4  
新法制备铁氰化钴修饰玻碳电极及多巴胺的电催化氧化  相似文献   

16.
钯微粒修饰聚苯胺电极对甲酸氧化的电催化研究   总被引:6,自引:2,他引:6  
有机小分子的燃料电池具有重要的应用前景,人们对它在贵重金属上的电催化氧化进行了大量研究。Pd具有不同于其它贵重金属的特性,在甲酸氧化中表现出与其它金属不同的电催化机理。Gholamian报道了将Pt微粒修饰聚苯胺电极对甲酸氧化的电催化研究,我们发现以多聚磷酸作为支持电解质所聚合的聚苯胺(PAN)再修饰金属原子方面具有其独特之处,并且用Pt进行再修饰之后对甲酸氧化的催化活性明显高于文献[4]的报道。因此本实验选用多聚磷酸为支持电解质电聚合苯胺,然后将钯微粒嵌入沉积到PAN中,并研究其对甲酸氧化的电催化作用。  相似文献   

17.
铁氰化镍修饰电极对抗坏血酸电催化氧化的研究   总被引:5,自引:0,他引:5  
抗坏血酸(AH_2)在玻碳和铂电极上的过电位较大,其电极反应不可逆.有关AH_2在碳及其它修饰电极上的电催化氧化已有一些报道,如减压热处理、Al_2O_3微粒研磨、普鲁士蓝修饰膜和聚乙烯二茂铁修饰膜等.本文研究了铁氰化镍修饰膜电极催化AH_2氧化的电化学行为.发现其阳极峰电流与AH_2浓度呈线性关系,可测定1×10~(-7)mol/L的AH_2,其灵敏度比聚乙烯二茂铁修饰电极提高一个数量级.用于蔬菜、水果中AH_2的测定,结果满意.  相似文献   

18.
首次制备了铁氰根和聚组氨酸(PLH)复合膜修饰电极,研究了多巴胺(DA)在该电极上的电化学行为。试验结果表明,该电极对DA的电化学氧化有显著的催化作用,在磷酸盐缓冲溶液(pH 7.6)中,多巴胺和抗坏血酸(VC)氧化峰峰电位差(ΔEp)为200 mV,从而消除了VC对DA的干扰。用示差脉冲伏安法(DPV)法测DA,线性范围为1.0×10-7~2.2×10-5mol.L-1,检出限(信噪比=3)为2.0×10-8mol.L-1。此电极于多巴胺针剂的分析,结果的RSD为3.2%。  相似文献   

19.
多巴胺是哺乳动物中枢神经系统中的一种非常重要的信息传递物质,建立对多巴胺快速简单测定的分析方法非常重要。本文就05年以来聚合物修饰电极对多巴胺电化学检测的研究进展进行了综述。  相似文献   

20.
以富勒烯和H_2O_2为原料在强碱条件下采用回流氧化法合成了水溶性富勒醇(C_(60)(OH)_n)。将Nafion溶液与C_(60)(OH)_n超声混合均匀,并修饰到玻碳电极表面,得到Nafion-C_(60)(OH)_n/GCE。电化学实验结果表明,该修饰电极对多巴胺在磷酸盐缓冲液(PBS)中的电化学反应具有显着的电催化作用。在最佳条件下,氧化峰电流与多巴胺浓度在0.2μmol·L~(-1)~20μmol·L~(-1)和20μmol·L~(-1)~100μmol·L~(-1)范围内具有良好的线性关系,检测限为0.011μmol·L~(-1)(S/N=3)。此外,该传感器具有良好的重现性和稳定性,并用于人体血清中的多巴胺分析,回收率达96.1%~97.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号