首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of polymer‐matrix‐compatible amphiphilic gold (Au) nanoparticles with well‐defined triblock polymer poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] and diblock polymers poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], polystyrene‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], and poly(t‐butyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] in water and in aqueous tetrahydrofuran (tetrahydrofuran/H2O = 20:1 v/v) at room temperature is reported. All these amphiphilic block copolymers were synthesized with atom transfer radical polymerization. The variations of the position of the plasmon resonance band and the core diameter of such block copolymer functionalized Au particles with the variation of the surface functionality, solvent, and molecular weight of the hydrophobic and hydrophilic parts of the block copolymers were systematically studied. Different types of polymer–Au nanocomposite films [poly(methyl methacrylate)–Au, poly(t‐butyl methacrylate)–Au, polystyrene–Au, poly(vinyl alcohol)–Au, and poly(vinyl pyrrolidone)–Au] were prepared through the blending of appropriate functionalized Au nanoparticles with the respective polymer matrices {e.g., blending poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate‐stabilized Au with the poly(methyl methacrylate)matrix only}. The compatibility of specific block copolymer modified Au nanoparticles with a specific homopolymer matrix was determined by a combination of ultraviolet–visible spectroscopy, transmission electron microscopy, and differential scanning calorimetry analyses. The facile formation of polymer–Au nanocomposites with a specific block copolymer stabilized Au particle was attributed to the good compatibility of block copolymer coated Au particles with a specific polymer matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1841–1854, 2006  相似文献   

2.
Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation   总被引:1,自引:0,他引:1  
Au-Ag alloy nanoparticles supported on mesoporous aluminosilicate have been prepared by one-pot synthesis using hexadecyltrimethylammonium bromide (CTAB) both as a stabilizing agent for nanoparticles and as a template for the formation of mesoporous structure. The formation of Au-Ag alloy nanoparticles was confirmed by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, and transmission electron microscopy (TEM). Although the Au-Ag alloy nanoparticles have a larger particle size than the monometallic gold particles, they exhibited exceptionally high activity in catalysis for low-temperature CO oxidation. Even at a low temperature of 250 K, the reaction rate can reach 8.7 x 10(-6) mol.g(cat.)(-1).s(-1) at an Au/Ag molar ratio of 3/1. While neither monometallic Au@MCM-41 nor Ag@MCM-41 shows activity at this temperature, the Au-Ag alloy system shows a strongly synergistic effect in high catalytic activity. In this alloy system, the size effect is no longer a critical factor, whereas Ag is believed to play a key role in the activation of oxygen.  相似文献   

3.
We report a facile strategy for incorporating persistent and effective antibacterial property into a widely used polymer, poly(methyl methacrylate)(PMMA), by copolymerizing methyl methacrylate(MMA) with 2-(tert-butylamino)ethyl methacrylate(TA) in one pot via atom transfer radical polymerization(ATRP). The subsequent self-assembly of the resultant poly(methyl methacrylate)-block-poly[(2-tert-butylamino)ethyl methacrylate](PMMA20-b-PTA15) diblock copolymer affords well-defined water-dispersible vesicles, which can be facilely sprayed on the walls in hospitals for effective inhibition and killing of bacteria. 1H-NMR and gel permeation chromatography(GPC) studies confirmed the successful synthesis of welldefined copolymer. Transmission electron microscopy(TEM), atomic force microscopy(AFM) and dynamic light scattering(DLS) studies proved the formation of vesicles with narrow size distribution. DLS studies revealed the excellent stability of vesicles at various temperatures. Antibacterial tests showed effective antibacterial activities of polymer vesicles against both Gram-positive and Gram-negative bacteria. Moreover, this strategy may be extended for preparing a wide range of polymeric materials for facile antibacterial applications in many fields.  相似文献   

4.
采用可逆加成-断裂链转移(RAFT)聚合合成了以丙烯酸异丁酯(IBA)、甲基丙烯酸2-二甲氨乙酯(DMAEMA)无规共聚嵌段与聚丙烯酸-2-羟丙酯(PHPA)组成的两亲性两嵌段共聚物(P( IBA-co-DMAEMA)-b-PHPA),并用凝胶渗透色谱(GPC)、核磁共振波谱(1H-NMR)及红外光谱(FTIR)对其进...  相似文献   

5.
Diblock copolymers comprising a highly biocompatible poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) block and a poly(2-(dimethylamino)ethyl methacrylate) (PDMA) block were evaluated for the synthesis of sterically stabilized gold nanoparticles in aqueous solution. The PDMA block becomes partially protonated on addition of HAuCl4, and the remaining nonprotonated tertiary amine groups reduce the AuCl4- counterion to zerovalent gold in situ. This approach results in the adsorption of the PDMA block onto the gold nanoparticle surface while the PMPC chains serve as a stabilizing block, producing highly biocompatible gold sols in aqueous solution at ambient temperature without any external reducing agent. The size and shape of gold nanoparticles could be readily controlled by tuning synthesis parameters such as the block composition and the relative and absolute concentrations of the PMPC-PDMA diblock copolymer and HAuCl4. These highly biocompatible gold sols have potential biomedical applications.  相似文献   

6.
Surface-enhanced Raman scattering (SERS)-active substrates of polyvinyl alcohol/gold-silver (PVA/Au-Ag) nanofibers were prepared using a simple approach involving electrospinning. The tunable surface plasmon resonance (SPR) of gold-silver alloy (Au-Ag alloy) nanoparticles (NPs) was achieved by controlling the feed ratio between gold and silver precursors. A higher concentration of Au-Ag alloy NPs could be obtained than the conventional methods, using 1wt% of PVA as the stabilizer. The Au-Ag alloy structure was demonstrated by HRTEM and STEM-EDX. After the electrospinning, the Au-Ag alloy NPs were successfully embedded in PVA nanofibers, as shown in the SEM and TEM images. Raman spectra displayed an apparent enhancement in the signal of 4-mercaptobenzoic acid (4-MBA), pyridine, and thiophenol molecules pre-absorbed from their ethanol solution onto the PVA/Au-Ag nanofibers. Different SERS effects were achieved by varying the Au content or excitation wavelength.  相似文献   

7.
Silica nanoparticles (NSiO2) are modified with mixed polymer brushes derived from a block copolymer precursor, poly(methyl methacrylate)-b-poly(glycidyl methacrylate)-b-poly(tert-butyl methacrylate) with short middle segment of PGMA, through one step ??grafting-onto?? approach. The block polymer precursors are prepared via reversible addition?Cfragmentation chain transfer-based polymerization of methyl methacrylate, glycidyl methacrylate, and tert-butyl methacrylate. The grafting is achieved by the reaction of epoxy group in short PGMA segment with silanol functionality of silica. After hydrolysis of poly(tert-butyl methacrylate) segment, amphiphilic NSiO2 with ??V-shaped?? polymer brushes possessing exact 1:1 molar ratio of different arms were prepared. The functionalized particles self-assemble at oil/water interfaces to form stable large droplets with average diameter ranging from 0.15?±?0.06 to 2.6?±?0.75?mm. The amphiphilicity of the particles can be finely tuned by changing the relative lengths of poly(methyl methacrylate) and poly(methacrylic acid) segments, resulting in different assembly behavior. The method may serve as a general way to control the surface property of the particles.  相似文献   

8.
姚加  汪青  童达君  李浩然 《物理化学学报》2007,23(10):1612-1616
采用氢核磁共振(1H-NMR)、动态光散射(DLS)及透射电子显微镜(TEM)对聚乙二醇-嵌段-聚甲基丙烯酸N,N-二甲氨基乙酯(PEG-b-PDMAEMA)三种具有不同PEG/PDMAEMA嵌段比的PEG-b-PDMAEMA共聚物在水溶液中的自聚集行为进行了研究. 研究表明, 两嵌段比例是影响聚合物胶束化过程的关键因素: 只有当其中聚乙二醇含量较低(质量分数低于33%)时, 聚合物才具有其pH/温度敏感胶束化特性. 此外, 共聚物溶液随温度胶束化过程与共聚物嵌段比大小密切相关. PEG-b-PDMAEMA这种不同于传统双亲性嵌段共聚物(DHBCs)在选择性溶剂中独特的胶束化行为, 是由聚合物溶液体系中各种基团之间的氢键作用决定的.  相似文献   

9.
Abstract

Ultrasonic (20 kHz, 70 W) solution degradations of polystyrene, substituted polystyrenes, and poly(n-vinyl carbazole) have been carried in toluene and tetrahydrofuran at 27 and -20°C in the presence of flexible chain polymers. Polystyrene formed block copolymers at 27°C with stiff-chain polymer PVCz; however, in the presence of flexible chain polymers, e.g., poly(vinyl methyl ketone) or poly(vinyl methyl ether), there were no block copolymers formed. Poly(n-vinyl carbazole) does not seem to form any block copolymers at 27°C with flexible chain polymers, e.g., poly(octadecyl methacrylate) and poly(ethyl methacrylate). Poly(p-chlorostyrene) and poly(p-methoxystyrene) also do not form block copolymers at 27°C with poly(octadecyl methacrylate) but do so with poly(hexadecyl methacrylate). It is quite possible that these may only be blends of two homopolymers. Poly(octa-decyl methacrylate) does yield a block copolymer when sonicated at -15°C with poly(p-isopropyl α-methylstyrene).  相似文献   

10.
This paper describes the syntheses of core/shell gold nanoparticles stabilized with a monolayer of double hydrophilic block copolymer and their stimuli responsiveness before and after shell cross-linking. The hybrid nanoparticles consist of gold core, cross-linkable poly(2-(dimethylamino)ethyl methacrylate) (PDMA) inner shell, and poly(ethylene oxide) (PEO) corona. First, diblock copolymer PEO-b-PDMA was prepared via the reversible addition-fragmentation chain transfer (RAFT) technique using a PEO-based macroRAFT agent. The dithioester end group of PEO-b-PDMA diblock copolymer was reduced to a thiol end group. The obtained PEO-b-PDMA-SH was then used to prepare diblock copolymer stabilized gold nanoparticles by the "grafting-to" approach. 1,2-Bis(2-iodoethoxy)ethane (BIEE) was utilized to selectively cross-link the PDMA residues in the inner shell. The stimuli responsiveness and colloidal stability of core/shell gold nanoparticles before and after shell cross-linking were characterized by laser light scattering (LLS), UV-vis transmittance, and transmission electron microscopy (TEM). At pH 9, the average hydrodynamic radius Rh of non-cross-linked hybrid gold nanoparticles starts to increase above 35 degrees C due to the lower critical solution temperature (LCST) phase behavior of the PDMA blocks in the inner shell. In contrast, Rh of the shell cross-linked gold nanoparticles were essentially independent of temperature. Core/shell gold nanoparticles before and after shell cross-linking exhibit reversible swelling on varying the solution pH. Compared to non-cross-linked core/shell gold nanoparticles, shell cross-linking of the hybrid gold nanoparticles leads to permanent core/shell nanostructures with much higher colloidal stability and physically isolates the gold core from the external environment.  相似文献   

11.
ABSTRACT

One kind of poly(methyl methacrylate [MMA]-block-2-hydroxyethyl methacrylate [HEMA]) block copolymer and two kinds of poly[MMA1-block-(MMA-co-HEMA)] block-random copolymers were synthesized by atom transfer radical polymerization. Then, poly(methyl methacrylate) [PMMA]-silica nano composites were synthesized by blending perhydropolysilazane (PHPS: NN-110) and block or block-random copolymers in 1,4-dioxane and casting the blend solutions. All composite films were transparent. Silica and organic domains were microphase separated in the composites. The effects of PHEMA content and blend ratio of PHPS to hydroxyl group on the microphase separation were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The thermal properties of the composites were investigated by differential scanning calorimetry (DSC) and thermal gravitic analysis (TGA).  相似文献   

12.
A new method of reversibly moving CdS nanoparticles in the perpendicular direction was developed on the basis of the phase separation of block copolymer brushes. Polystyrene-b-(poly(methyl methacrylate)-co-poly(cadmium dimethacrylate)) (PS-b-(PMMA-co-PCdMA)) brushes were grafted from the silicon wafer by surface-initiated atom transfer radical polymerization (ATRP). By exposing the polymer brushes to H2S gas, PS-b-(PMMA-co-PCdMA) brushes were converted to polystyrene-b-(poly(methyl methacrylate)-co-poly(methacrylic acid)(CdS)) (PS-b-(PMMA-co-PMAA(CdS))) brushes, in which CdS nanoparticles were chemically bonded by the carboxylic groups of PMAA segment. Alternating treatment of the PS-b-(PMMA-co-PMAA(CdS)) brushes by selective solvents for the outer block (a mixed solvent of acetone and ethanol) and the inner PS block (toluene) induced perpendicular phase separation of polymer brushes, which resulted in the reversible lifting and lowering of CdS nanoparticles in the perpendicular direction. The extent of movement can be adjusted by the relative thickness of two blocks of the polymer brushes.  相似文献   

13.
In order to synthesize block copolymers consisting of segments having dissimilar properties, vinyl polymer - poly (α-amino acid) block copolymers were synthesized by two different methods. In the first method, the terminal amino groups of polysarcosine, poly(γ-benzyl L-glutamate), and poly(γ-benzyloxycarbonyl-L-lysine) were haloacetylated. The mixture of the terminally haloacetylated poly (α-amino acid) and styrene or methyl methacrylate was photoirradiated in the presence of Mo (CO)6 or heated with Mo(CO)6, yielding A-B-A-type block copolymers consisting of poly(α-amino cid) (the A component) and vinyl polymer(the B component). The characterization of block copolymers revealed that the thermally initiated polymerization of vinyl compounds by the trichloroacetyl poly(α-amino acid)/Mo(CO)6 system was most suitable for the synthesis of vinyl polymer - poly-(α-amino acid) block copolymers. In the second method, poly (methyl methacrylate) and polystyrene having a terminal amino group were synthesized by the radical polymerization in the presence of 2-mercaptoethylammonium chloride. Using these polymers having a terminal amino group as an initiator, the block polymerizations of γ-benzyl L-glutamate NCA and e-benzyloxycarbonyl-L-lysine NCA were carried out, yielding A-B-type block copolymer. By eliminating the protecting groups of the side chains of poly(α-amino acid) segment, block copolymers such as poly(methyl methacrylate) with poly(L-glutamic acid) or poly(L-lysine) and polystyrene with poly(L-glutamic acid) and poly(L-lysine) were successfully synthesized.  相似文献   

14.
The synthesis of a fluorinated macroinitiator for copper-catalyzed atom transfer radical polymerization (ATRP) is reported, as well as its use for the controlled living polymerization of poly(propylene glycol) methacrylate (PPGM) in MEK at 80 °C. The ATRP system used was efficient for polymerization of the functionalized monomer and the molecular weight of the polymer estimated by NMR spectroscopy was in close agreement with the theoretical molecular weight, as expected for controlled processes. The statistical copolymerization of PPGM or methyl ether poly(ethylene glycol) methacrylate (MPEGMA) with a perfluoroalkyl ethyl methacrylate by copper-mediated ATRP was also investigated and led to copolymers with essentially random incorporation of monomers. The syntheses and characterization of star-like homopolymers of MPEGMA or the fluorinated monomer via ATRP are also reported, as well as an amphiphilic star-like block copolymer containing ethyleneglycol units as the core and fluorinated moieties in the shell. The micellar behavior of this copolymer was investigated as a function of the external environment.  相似文献   

15.
Photo‐crosslinkable and amine‐containing block copolymer nanoparticles are synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization‐induced self‐assembly of a multifunctional core‐forming monomer, 2‐((3‐(4‐(diethylamino)phenyl)acryloyl)oxy)ethyl methacrylate (DEMA), using poly(2‐hydroxypropyl methacrylate) macromolecular chain transfer agent as a steric stabilizer in methanol at 65 °C. By tuning the chain length of PDEMA, a range of nanoparticle morphologies (sphere, worm, and vesicle) can be obtained. Since cinnamate groups can easily undergo a [2 + 2] cycloaddition of the carbon–carbon double bonds upon UV irradiation, the as‐prepared block copolymer nanoparticles are readily stabilized by photo‐crosslinking to produce anisotropic nanoparticles. The crosslinked block copolymer nanoparticles can be used as templates for in situ formation polymer/gold hybrid nanoparticles.

  相似文献   


16.
Nanobimetallic particles consisting of Au-Pd, Au-Ag, and Au-Pt have been synthesized in a single step by a sol-gel process and stabilized in liquid and solid matrices. Organically modified silicates (Ormosils) that play a dual role of a matrix and of a stabilizer have been used to obtain very stable dispersions in the form of sols, gels, and monoliths. The simultaneous reduction of metal ions leads to either a surface enriched with one component or an alloy type of structure depending on the bimetal combination. The nanometallic dispersions are characterized by absorbance, TEM, XRD, IR, XPS, and CO adsorption studies. The stabilized nanoparticles are found to be good electrocatalysts and the preliminary results on the electrochemical reduction of oxygen are reported.  相似文献   

17.
This study was related to the investigation of the chemical fixation of carbon dioxide to a copolymer bearing epoxide and the application of the cyclic carbonate group containing copolymer‐to‐polymer blends. In the synthesis of poly[(2‐oxo‐1,3‐dioxolane‐4‐yl) methyl methacrylate‐co‐ethyl acrylate] [poly(DOMA‐co‐EA)] from poly(glycidyl methacrylate‐co‐ethyl acrylate) [poly(GMA‐co‐EA)] and CO2, quaternary ammonium salts showed good catalytic activity. The films of poly(DOMA‐co‐EA) with poly(methyl methacrylate) (PMMA) or poly(vinyl chloride) (PVC) blends were cast from N,N′‐dimethylformamide solution. The miscibility of the blends of poly(DOMA‐co‐EA) with PMMA or PVC have been investigated both by DSC and visual inspection of the blends. The optical clarity test and DSC analysis showed that poly(DOMA‐co‐EA) containing blends were miscible over the whole composition range. The miscibility behaviors were discussed in terms of Fourier transform infrared spectra and interaction parameters based on the binary interaction model. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1472–1480, 2001  相似文献   

18.
The differential microemulsion polymerization technique was used to synthesize the nanoparticles of glycidyl-functionalized poly(methyl methacrylate) or PMMA via a two-step process, by which the amount of sodium dodecyl sulfate (SDS) surfactant required was 1/217 of the monomer amount by weight and the surfactant/water ratio could be as low as 1/600. These surfactant levels are extremely low in comparison with those used in a conventional microemulsion polymerization system. The glycidyl-functionalized PMMA nanoparticles are composed of nanosized cores of high molecular weight PMMA and nano-thin shells of the random copolymer poly[(methyl methacrylate)-ran-(glycidyl methacrylate)]. The particle sizes were about 50 nm. The ratios of the glycidyl methacrylate in the glycidyl-functionalized PMMA were achieved at about 5–26 wt.%, depending on the reaction conditions. The molecular weight of glycidyl-functionalized PMMA was in the range of about 1 × 106 to 3 × 106 g mol−1. The solid content of glycidyl-functionalized PMMA increased when the amount of added glycidyl methacrylate was increased. The glycidyl-functionalized polymer on the surface of nano-seed PMMA nanoparticles was a random copolymer which was confirmed by 1H-NMR spectroscopy. The amounts of functionalization were investigated by the titration of the glycidyl functional group. The structure of the glycidyl-functionalized PMMA nanoparticles was investigated by means of TEM. The glycidyl-functionalized PMMA has two regions of Tg which are at around 90 °C and 125 °C, respectively, of which the first one was attributed to the poly[(methyl methacrylate)-ran-(glycidyl methacrylate)] and the second one was due to the PMMA. A core/shell structure of the glycidyl-functionalized PMMA latex nanoparticles was observed.  相似文献   

19.
The formation mechanism and morphology of Au-Ag bimetallic colloidal nanoparticles depend on the composition. Ag coated Au colloidal nanoparticles have been prepared by deposition of Ag through chemical reduction on performed Au colloid. The composition of the Au(100-x)-Ag(x) particles was varied from x=0 to 50. The obtained colloids were characterized by UV-vis spectroscopy and transmission electron microscopy (TEM). The Au(80)-Ag(20) colloid consists of alloy nanorods with dimension of 25nmx100nm. The activity of these nanorods in surface enhanced Raman spectroscopy (SERS) was checked by using sodium salicylate as an adsorbate probe. Intense SERS bands are observed indicating its usefulness as a SERS substrate in near infrared (NIR) laser excitation.  相似文献   

20.
This paper describes a method to pattern surfaces with Au-Ag hybrid nanoparticles. We used block copolymer micelle lithography of Au nanoparticles and electroless deposition of Ag. The combination of these two methods enables independent tuning of nanoparticle spacing and Ag-shell size. For this purpose, 8 nm large patterned Au nanoparticle seeds served as nuclei for the electroless deposition of silver that is based on a modified Tollens process with glucose. By adjusting the reaction conditions, specific growth of Ag on top of the Au seeds has been accomplished and analyzed by SEM, HRTEM, XEDS, and UV-vis spectroscopy. We could show that this versatile and green method is feasible on glass as well as on biomedical-relevant polymers like poly(ethylene glycol) hydrogels and amorphous Teflon. In conclusion, this method provides a new route to pattern glass and polymeric surfaces with Au-Ag hybrid nanoparticles. It will have many uses in applications such as surface enhanced Raman spectroscopy (SERS) or antimicrobial coatings for which hybrid nanoparticle density, size, and morphology are important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号