首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A titration microcalorimeter with the sample cells of 1 mL and 3 mL volume was constructed by combining LKB-2107 ampule microcalorimeter with an improved Thermometric titration microcalorimeter. Its sensitivity and precision were tested with the baseline noise and stability, the measurement of energy equivalent, and the linear relation of electric energy and integral area as the function of voltage (V)-time (f). Its accuracy was demonstrated by measuring the dilution enthalpy of a concentrated sucrose solution and the micelle-forming enthalpy of sodium dodecyl sulfate (SDS) in aqueous solution respectively. At the same time, the enthalpy of interaction between SDS and didodecyldimethylammonium bromide (DDAB) was measured by using the titration microcalorimeter, and the phase behavior of SDS-DDAB aqueous mixture was discussed. The microcalorimetric results show that the enthalpy of interaction between SDS and DDAB micelles is -29.53 kJ/mol, the enthalpy of formation of 1:1 SDS-DDAB salt is -125.8 kJ/mol,  相似文献   

2.
In this paper, the interaction between squarylium cyanine and porphyrin in chloroform is investigated by absorption and fluorescence spectroscopy. Emphasis has been put on the mechanism of intermolecular energy transfer. The overlap integral J between the absorption spectrum of squarylium cyanine and the fluorescence spectrum of porphyrin was calculated, which reveals that the singlet-singlet energy transfer may occur from porphyrin to squarylium cyanine in solution. In comparison of the observed rate constant [kqII=6.1 ×1013 (mol/L)-1·s-1] for fluorescence quenching of porphyrin by squarylium cyanine with the diffusion rate constant in chloroform [kdif=1.1×1010 (mol/L)-1·s-1] and the rate of energy transfer [ket≤6.7×104 (mol/L)-1·s-1 in the experimentally dilute solutions] estimated from Forster formula, the possibility of energy transfer by electron exchange or/and coulombic mechanism could be excluded. So it has been definitely convinced that the intermolecuiar energy transfer between them is  相似文献   

3.
Ab initio UMP2 and UQCISD(T) calculations, with 6-311G** basis sets, were performed for the titled reactions. The results show that the reactions have two product channels: NH2+ HNCO→NH3+NCO (1) and NH2+HNCO-N2H3+CO (2), where reaction (1) is a hydrogen abstraction reaction via an H-bonded complex (HBC), lowering the energy by 32.48 kJ/mol relative to reactants. The calculated QCISD(T)//MP2(full) energy barrier is 29.04 kJ/mol, which is in excellent accordance with the experimental value of 29.09 kJ/mol. In the range of reaction temperature 2300-2700 K, transition theory rate constant for reaction (1) is 1.68 × 1011- 3.29 × 1011 mL · mol-1· s-1, which is close to the experimental one of 5.0 ×1011 mL× mol-1· s-1 or less. However, reaction (2) is a stepwise reaction proceeding via two orientation modes, cis and trans, and the energy barriers for the rate-control step at our best calculations are 92.79 kJ/mol (for cis-mode) and 147.43 kJ/mol (for trans-mode), respectively, which is much higher than  相似文献   

4.
The molecule with Th symmetry is rare.A dodecahedrane-like molecule C12H12B8 with uncommon Th symmetry has been reported here.Density functional calculations and minimization techniques have been employed to characterize its structural and electronic properties.Its geometry,electronic properties,vibrational frequencies and heat of formation have been calculated at the B3LYP/6-311+G(d,p) level of theory.The absence of imaginary vibrational frequency confirms that it corresponds to true minimum on the potential energy hypersurface.Its vibrational bands in the IR intensity have been discussed and compared with future experimental identification.At the B3LYP/6-311+G(d,p) level,the heat of formation has been calculated to be 720.9 kJ mol-1 using the isodesmic reaction.According to this value,it is a potential high energy density molecule.  相似文献   

5.
正Energy electrochemistry is one of the key branches of energy chemistry. Its main goal is to develop chemical energy storage devices with high performance, high safety, long life and low cost for wide applications. The key research areas include lithium ion batteries, fuel cells and redox flow batteries, and the key future directions include Li-S batteries, Li-air batteries, all solid-state batteries and batteries for wearable electronics. Recently there  相似文献   

6.
A polymer containing bis(ethylenedithio)-tetrathiafulvalene moiety wassynthesized and its electrochemical properties were studied by cyclic voltammetry. Thecharge transfer complexes of the polymer with TCNQ and I_2 were obtained by chemicaloxidation in dichlorobenzene. All of them are semi-conductors. A film of the polymer wasobtained by casting. Its conductivity, after oxidation with iodine, is 2.24×10~(-6)S·cm~(-1)and its conducting state is stable in air.  相似文献   

7.
An isoenzyme of CuZn-superoxide dismutase, denoted as CuZnSODⅢ, has been separated and purified from Nicotiana Tobacurn (tobacco) leaves to apparent homogeneity. Its molecular mass is 22976.6Da. It is composed of one subunit, which is consisted of 187 amine acid residues and contains 1 copper and 0.5 zinc atom. The activation energy of the thermal denaturation process has been obtained as about 143.SkJmol^-1. Meanwhile, some properties of spectra were investigated.  相似文献   

8.
An ab initio analytical potential energy surface called BW3 for the CIH2 reactive system is presented. The fit of this surface is based on about 1 200 ab initio energy points, computed with multi-reference configuration interaction(MRCI) and scaling external correlation (SEC) method and a very large basis set. The precision in the fit is very high. The BW3 surface could reproduce correctly the dissociation energy of H2 and HCI, and the endothermicity of the Cl H2 abstraction reaction. For the Cl H2 abstraction reaction, the saddle point of BW3 lies in collinear geometries, and the barrier height is 32.84 kJ/mol; for the H CIH exchange reaction, the barrier of BW3 is also linear, with a height of 77.40 kJ/mol.  相似文献   

9.
The conversion between anamorphoses of the dihydrated glycine complex was studied by means of B3LYP/6-31++G**. It was found that proton transfer was accompanied by hydrogen bond transfer in the process of conversion between different kinds of anamorphoses. With proton transfer, the electrostatic action was notably increased and the hydrogen-bonding action was evidently strengthened when the dihydrated neutral glycine complex converts into dihydrated zwitterionic glycine complex. The activation energy required for hydrogen bond transfer between dihydrated neutral glycine complexes is very low (6.32 kJ·mol-1); however, the hydrogen bond transfer between dihydrated zwitterionic glycine complexes is rather difficult with the required activation energy of 13.52 kJ·mol-1 due to the relatively strong electrostatic action. The activation energy required by proton transfer is at least 27.33 kJ·mol-1, higher than that needed for hydrogen bond transfer. The activation energy for either hydrogen bond transfer or proton transfer is in the bond-energy scope of medium-strong hydrogen bond, so the four kinds of anamorphoses of the dihydrated glycine complex could convert mutually.  相似文献   

10.
The structure of electronic energy bands, electric charge distribution and the amount of charge transfer of molecular crystals 1-MCI·(TCNQ)_2 (Ⅰ) and 2-MCI· (TCNQ)_2 (Ⅱ) have been studied. The results are: (ⅰ) The dominant contributions to the electrical conductivities for crystals Ⅰ and Ⅱ are from TCNQ molecular columns, and the charge carriers are electrons. (ⅱ) The electrical conduction is mainly due to the hopping of charge carriers between the seats of lattice. (ⅲ) The considerable difference of the electrical conductivities between crystals Ⅰ and Ⅱ is due to the differences between (a) the concentrations of charge carriers n_(AⅠ)~C= 0.9988-|e|/cell and n_(AⅡ)~C=0.0340-|e|/cell; (b) the widths of the energy bands △E_(AⅠ)~(LU)=0.88 eV and △E_(AⅡ)~LU=0.040 eV; (c) the first derivative of E with respect to k, (dE/dk)_(K_FAⅠ)~(LU)=0.27 eV· and (dE/dk)_(K_FAⅡ)~LU=0.0048 eV·; and (d) the difference of energy barriers for the hopping of charge carriers ∈_Ⅱ-∈Ⅰ=2.5-8.8 kJ/mol.  相似文献   

11.
The constant-volume combustion energy, △cU (DADE, s, 298.15 K), the thermal behavior, and kinetics and mechanism of the exothermic decomposition reaction of 1,1-diamino-2,2-dinitroethylene (DADE) have been investigated by a precise rotating bomb calorimeter, TG-DTG, DSC, rapid-scan fourier transform infrared (RSFT-IR) spectroscopy and T-jump/FTIR, respectively. The value of △cHm (DADE, s, 298.15 K) was determined as (-8518.09±4.59) j·g^-1. Its standard enthalpy of combustion, △cU (DADE, s, 298.15 K), and standard enthalpy of formation, △fHm (DADE, s, 298.15 K) were calculated to be (-1254.00±0.68) and (- 103.98±0.73) kJ·mol^-1, respectively The kinetic parameters (the apparent activation energy Ea and pre-exponential factor A) of the first exothermic decomposition reaction in a temperature-programmed mode obtained by Kissinger's method and Ozawa's method, were Ek=344.35 kJ·mol^-1, AR= 1034.50 S^-1 and Eo=335.32 kJ·mol^-1, respectively. The critical temperatures of thermal explosion of DADE were 206.98 and 207.08 ℃ by different methods. Information was obtained on its thermolysis detected by RSFT-IR and T-jump/FTIR.  相似文献   

12.
用精密自动绝热量热计测定了4-硝基苯甲醇(4-NBA)在78 ~ 396 K温区的摩尔热容。其熔化温度、摩尔熔化焓及摩尔熔化熵分别为:(336.426 ± 0.088) K, (20.97 ± 0.13) kJ×mol-1 和 (57.24 ± 0.36) J×K-1×mol-1.根据热力学函数关系式,从热容值计算出了该物质在80 ~ 400 K温区的热力学函数值 [HT - H298.15 K] 和[ST - S298.15 K]. 用精密氧弹燃烧量热计测定了该物质在T=298.15 K的恒容燃烧能和标准摩尔燃烧焓分别为 (C7H7NO3, s)=- ( 3549.11 ± 1.47 ) kJ×mol-1 和 (C7H7NO3, s)=- ( 3548.49 ± 1.47 ) kJ×mol-1. 利用标准摩尔燃烧焓和其他辅助热力学数据通过盖斯热化学循环, 计算出了该物质标准摩尔生成焓 (C7H7NO3, s)=- (206.49 ± 2.52) kJ×mol-1 .  相似文献   

13.
The product from reaction of lanthanum chloride heptahydrate with salicylic acid and thioproline, [La(Hsal)2•(tch)]•2H2O, was synthesized and characterized by IR, elemental analysis, molar conductance, thermogravimatric analysis and chemistry analysis. The standard molar enthalpies of solution of LaCl3•7H2O (s), [2C7H6O3 (s)], C4H7NO2S (s) and [La(Hsal)2•(tch)]•2H2O (s) in a mixed solvent of absolute ethyl alcohol, dimethyl sulfoxide (DMSO) and 3 mol•L-1 HCl were determined by calorimetry to be [LaCl3•7H2O (s), 298.15 K]=(-102.36±0.66) kJ•mol-1, [2C7H6O3 (s), 298.15 K]=(26.65±0.22) kJ•mol-1, [C4H7NO2S (s), 298.15 K]=(-21.79±0.35) kJ•mol-1 and {[La(Hsal)2•(tch)]•2H2O (s), 298.15 K}=(-41.10±0.32) kJ•mol-1. The enthalpy change of the reaction LaCl3•7H2O (s)+2C7H6O3 (s)+C4H7NO2S (s)=[La(Hsal)2•(tch)]•2H2O (s)+3HCl (g)+5H2O (l) (Eq. 1) was determined to be =(41.02±0.85) kJ•mol-1. From date in the literature, through Hess’ law, the standard molar enthalpy of formation of [La(Hsal)2•(tch)]•2H2O (s) was estimated to be {[La(Hsal)2•(tch)]•2H2O (s), 298.15 K}=(-3017.0±3.7) kJ•mol-1.  相似文献   

14.
邸友莹张剑  谭志诚 《中国化学》2007,25(10):1423-1429
A coordination compound of erbium perchlorate with L-α-glutamic acid, [Er2(Glu)2(H2O)6](ClO4)4·6H2O(s), was synthesized. By chemical analysis, elemental analysis, FTIR, TG/DTG, and comparison with relevant literatures, its chemical composition and structure were established. The mechanism of thermal decomposition of the complex was deduced on the basis of the TG/DTG analysis. Low-temperature heat capacities were measured by a precision automated adiabatic calorimeter from 78 to 318 K. An endothermic peak in the heat capacity curve was observed over the temperature region of 290-318 K, which was ascribed to a solid-to-solid phase transition. The temperature Ttrans, the enthalpy △transHm and the entropy △transSm of the phase transition for the compound were determined to be: (308.73±0.45) K, (10.49±0.05) kJ·mol^-1 and (33.9±0.2) J·K^-1·mol^-1. Polynomial equation of heat capacities as a function of the temperature in the region of 78-290 K was fitted by the least square method. Standard molar enthalpies of dissolution of the mixture [2ErCl3·6H2O(s)+2L-Glu(s)+6NaClO4·H2O(s)] and the mixture {[Er2(Glu)2(H2O)6](ClO4)4·6H2O(s)+6NaCl(s)} in 100 mL of 2 mol·dm^-3 HClO4 as calorimetric solvent, and {2HClO4(1)} in the solution A' at T=298.15 K were measured to be, △dHm,1=(31.552±0.026) kJ·mol^-1, △dHm,2 = (41.302±0.034) kJ·mol^-1, and △dHm,3 = ( 14.986 ± 0.064) kJ·mol^-1, respectively. In accordance with Hess law, the standard molar enthalpy of formation of the complex was determined as △fHm-=-(7551.0±2.4) kJ·mol^-1 by using an isoperibol solution-reaction calorimeter and designing a thermochemical cycle.  相似文献   

15.
Low‐temperature heat capacities of gramine (C11H14N2) were measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 401 K. A polynomial equation of heat capacities as a function of temperature was fitted by least squares method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at 5 K intervals. The constant‐volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen‐bomb combustion calorimeter as ΔcU=−(35336.7±13.9) J·g−1. The standard molar enthalpy of combustion of the compound was determined to be ΔcHm0=−(6163.2±2.4) kJ·mol−1, according to the definition of combustion enthalpy. Finally, the standard molar enthalpy of formation of the compound was calculated to be Δ;cHm0=−(166.2±2.8) kJ·mol−1 in accordance with Hess law.  相似文献   

16.
以苏糖酸与碳酸氢钾反应制得苏糖酸钾K(C4H7O5)·H2O,通过红外光谱、热重、化学分析及元素分析等对其进行了表征。用精密自动绝热热量计测量了该化合物在78K-395K温区的摩尔热容。实验结果表明,该化合物存在明显的脱水转变,其脱水浓度、摩尔脱水焓以及摩尔脱水熵分别为:(380.524 ± 0.093) K,(19.655 ± 0.012) kJ/mol 和 (51.618 ± 0.051) J/(K·mol)。将78K-362K和382K-395K两个温区的实验热容值用最小二乘法拟合,得到了两个表示热容随温度变化的多项式方程。以RBC-II型恒容转动弹热量计测定目标化合物的恒容燃烧能为(-1749.71 ± 0.91) kJ/mol,计算得到其标准摩尔生成焓为(-1292.56 ± 1.06) kJ/mol。  相似文献   

17.
Introduction A series of lanthanide sulfide complexes have beenlargely used for ceramics and thin film materials1 andthese complexes could be prepared from the precursorswhich are the compounds containing lanthanide-sulfurbonds.2-4 For instance, the compounds synthesized with[(alkyl)2dtc]-, phen?H2O and lanthanide salts were usedas the volatile precursors for preparing lanthanide sul-fide, its friction properties in lubricant was investigatedin literature 5 and the preparation and propertie…  相似文献   

18.
在80~400 K温区,用高精度全自动绝热量热仪测定了对氨基苯甲酸摩尔热容,得到摩尔热容随温度的变化的关系式为:  相似文献   

19.
Low-temperature heat capacities of 2-chloro-N,N-dimethylnicotinamide were precisely measured with a high-precision automated adiabatic calorimeter over the temperature range from 82 K to 380 K. The compound was observed to melt at (342.15±0.04) K. The molar enthalpy AfusionHm, and entropy of fusion, △fusionSm, as well as the chemical purity of the compound were determined to be (21387±7) J·mol^-1, (62.51±0.01) J·mol^-1·K^-1, (0.9946±0.0005) mass fraction, respectively. The extrapolated melting temperature for the pure compound obtained from fractional melting experiments was (342.25±0.024) K. The thermodynamic function data relative to the reference temperature 298.15 K were calculated based on the heat capacity measurements in the temperature range from 82 to 325 K. The thermal behavior of the compound was also investigated by different scanning calorimetry.  相似文献   

20.
在干燥氩气氛下, 用等摩尔的高纯无水GaCl3和[C2mim][Cl](氯化1-甲基-3-乙基咪唑)直接搅拌混合, 制备了淡黄色透明的的离子液体[C2mim][GaCl4] (1-ethyl-3-methylimidazolium chlorogallate) . 在298.15 K下, 利用具有恒温环境的溶解反应热量计, 测定了这种离子液体的不同浓度摩尔溶解焓 . 针对[C2mim][GaCl4]溶解于水后即分解的特点, 在Pitzer电解质溶液理论基础上, 提出了确定这种离子液体标准摩尔溶解焓的新方法, 得到了[C2mim][GaCl4]在水中的标准摩尔溶解焓, =-132 kJ•mol-1, 以及Pitzer焓参数组合: =-0.1373076和 =0.3484209. 借助热力学循环和Glasser离子液体晶格能理论, 用Ga3+, Cl-和[C2mim]—的离子水化焓数据以及本文得到的[C2mim][GaCl4]标准摩尔溶解焓, 估算了配离子4Cl-(g)解离成Ga3+(g)和4Cl-(g)的解离焓ΔHdis([GaCl4]-)≈5855 kJ•mol-1. 这个结果揭示了离子液体[C2mim][GaCl4]的标准摩尔溶解焓绝对值并不很大的原因, 即是很大的离子水化焓被很大的[GaCl4]-(g)的解离焓相互抵消了.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号