首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recently, based on the principle of electronic chemical potential equalization and the principle of charge conservation, we proposed a flexible-boundary scheme that allows both partial charge transfer and self-consistent polarization between the quantum mechanical (QM) and molecular mechanical (MM) subsystems in QM/MM calculations; the scheme was applied to study the atomic charges in selected ion–solvent complexes. In the present contribution, we further extend the flexible-boundary treatment to handle the QM/MM boundary passing through covalent bonds. We find that the flexible-boundary redistributed charge and dipole schemes yield reasonable agreement with full-QM calculations for a number of molecular ions and amino acids with charged side chains. Using the full-QM results as reference, the mean unsigned deviations are computed to be 0.06 e for atomic partial charges of the QM atoms, 0.11 e for the amounts of charge transfer between the QM and MM subsystems, and 0.016 Å for the lengths of the covalent bonds that directly connect the QM and MM subsystems. The results indicate the importance of accounting for partial charge transfer across the QM/MM boundary when the QM subsystems are charged.  相似文献   

3.
A critical issue underlying the accuracy and applicability of the combined quantum mechanical/molecular mechanical (QM/MM) methods is how to describe the QM/MM boundary across covalent bonds. Inspired by the ab initio pseudopotential theory, here we introduce a novel design atom approach for a more fundamental and transparent treatment of this QM/MM covalent boundary problem. The main idea is to replace the boundary atom of the active part with a design atom, which has a different number of valence electrons but very similar atomic properties. By modifying the Troullier-Martins scheme, which has been widely employed to construct norm-conserving pseudopotentials for density functional calculations, we have successfully developed a design-carbon atom with five valence electrons. Tests on a series of molecules yield very good structural and energetic results and indicate its transferability in describing a variety of chemical bonds, including double and triple bonds.  相似文献   

4.
A simple interface is proposed for combined quantum mechanical (QM) molecular mechanical (MM) calculations for the systems where the QM and MM regions are connected through covalent bonds. Within this model, the atom that connects the two regions, called YinYang atom here, serves as an ordinary MM atom to other MM atoms and as a hydrogen-like atom to other QM atoms. Only one new empirical parameter is introduced to adjust the length of the connecting bond and is calibrated with the molecule propanol. This model is tested with the computation of equilibrium geometries and protonation energies for dozens of molecules. Special attention is paid on the influence of MM point charges on optimized geometry and protonation energy, and it is found that it is important to maintain local charge-neutrality in the MM region in order for the accurate calculation of the protonation and deprotonation energies. Overall the simple YinYang atom model yields comparable results to some other QM/MM models.  相似文献   

5.
The performance of semiempirical molecular-orbital methods--MNDO, MNDO-d, AM1, RM1, PM3 and PM6--in describing halogen bonding was evaluated, and the results were compared with molecular mechanical (MM) and quantum mechanical (QM) data. Three types of performance were assessed: (1) geometrical optimizations and binding energy calculations for 27 halogen-containing molecules complexed with various Lewis bases (Two of the tested methods, AM1 and RM1, gave results that agree with the QM data.); (2) charge distribution calculations for halobenzene molecules, determined by calculating the solvation free energies of the molecules relative to benzene in explicit and implicit generalized Born (GB) solvents (None of the methods gave results that agree with the experimental data.); and (3) appropriateness of the semiempirical methods in the hybrid quantum-mechanical/molecular-mechanical (QM/MM) scheme, investigated by studying the molecular inhibition of CK2 protein by eight halobenzimidazole and -benzotriazole derivatives using hybrid QM/MM molecular-dynamics (MD) simulations with the inhibitor described at the QM level by the AM1 method and the rest of the system described at the MM level. The pure MM approach with inclusion of an extra point of positive charge on the halogen atom approach gave better results than the hybrid QM/MM approach involving the AM1 method. Also, in comparison with the pure MM-GBSA (generalized Born surface area) binding energies and experimental data, the calculated QM/MM-GBSA binding energies of the inhibitors were improved by replacing the G(GB,QM/MM) solvation term with the corresponding G(GB,MM) term.  相似文献   

6.
7.
We present an alternative approach to determine "density-dependent property"-derived charges for molecules in the condensed phase. In the case of a solution, it is essential to take into consideration the electron polarization of molecules in the active site of this system. The solute and solvent molecules in this site have to be described by a quantum mechanical technique and the others are allowed to be treated by a molecular mechanical method (QM/MM scheme). For calculations based on this scheme, using the forces and interaction energy as density-dependent property our charges from interaction energy and forces (CHIEF) approach can provide the atom-centered charges on the solute atoms. These charges reproduce well the electrostatic potentials around the solvent molecules and present properly the picture of the electron density of the QM subsystem in the solution system. Thus, the CHIEF charges can be considered as the atomic charges under the conditions of the QM/MM simulation, and then enable one to analyze electrostatic interactions between atoms in the QM and MM regions. This approach would give a view of the QM nuclei and electrons different from the conventional methods.  相似文献   

8.
The performance of different link atom based frontier treatments in QM/MM simulations was evaluated critically with SCC-DFTB as the QM method. In addition to the analysis of gas-phase molecules as in previous studies, an important element of the present work is that chemical reactions in realistic enzyme systems were also examined. The schemes tested include all options available in the program CHARMM for SCC-DFTB/MM simulation, which treat electrostatic interactions due to the MM atoms close to the QM/MM boundary in different ways. In addition, a new approach, the divided frontier charge (DIV), has been implemented in which the partial charge associated with the frontier MM atom ("link host") is evenly distributed to the other MM atoms in the same group. The performance of these schemes was evaluated based on properties including proton affinities, deprotonation energies, dipole moments, and energetics of proton transfer reactions. Similar to previous work, it was found that calculated proton affinities and deprotonation energies of alcohols, carbonic acids, amino acids, and model DNA bases are very sensitive to the link atom scheme; the commonly used single link atom approach often gives error on the order of 15 to 20 kcal/mol. Other schemes give better and, on average, mutually comparable results. For proton transfer reactions, encouragingly, both activation barriers and reaction energies are fairly insensitive (within a typical range of 2-4 kcal/mol) to the link atom scheme due to error cancellation, and this was observed for both gas-phase and enzyme systems. Therefore, the effect of using different link atom schemes in QM/MM simulations is rather small for chemical reactions that conserve the total charge. Although the current study used an approximate DFT method as the QM level, the observed trends are expected to be applicable to QM/MM methods with use of other QM approaches. This observation does not mean to encourage QM/MM simulations without careful benchmark in the study of specific systems, rather it emphasizes that other technical details, such as the treatment of long-range electrostatics, tend to play a more important role and need to be handled carefully.  相似文献   

9.
The extent to which accuracy of electric charges plays a role in protein-ligand docking is investigated through development of a docking algorithm, which incorporates quantum mechanical/molecular mechanical (QM/MM) calculations. In this algorithm, fixed charges of ligands obtained from force field parameterization are replaced by QM/MM calculations in the protein environment, treating only the ligands as the quantum region. The algorithm is tested on a set of 40 cocrystallized structures taken from the Protein Data Bank (PDB) and provides strong evidence that use of nonfixed charges is important. An algorithm, dubbed "Survival of the Fittest" (SOF) algorithm, is implemented to incorporate QM/MM charge calculations without any prior knowledge of native structures of the complexes. Using an iterative protocol, this algorithm is able in many cases to converge to a nativelike structure in systems where redocking of the ligand using a standard fixed charge force field exhibits nontrivial errors. The results demonstrate that polarization effects can play a significant role in determining the structures of protein-ligand complexes, and provide a promising start towards the development of more accurate docking methods for lead optimization applications.  相似文献   

10.
A quantum mechanics/molecular mechanics (QM/MM) implementation that uses the Gaussian electrostatic model (GEM) as the MM force field is presented. GEM relies on the reproduction of electronic density by using auxiliary basis sets to calculate each component of the intermolecular interaction. This hybrid method has been used, along with a conventional QM/MM (point charges) method, to determine the polarization on the QM subsystem by the MM environment in QM/MM calculations on 10 individual H(2)O dimers and a Mg(2+)-H(2)O dimer. We observe that GEM gives the correct polarization response in cases when the MM fragment has a small charge, while the point charges produce significant over-polarization of the QM subsystem and in several cases present an opposite sign for the polarization contribution. In the case when a large charge is located in the MM subsystem, for example, the Mg(2+) ion, the opposite is observed at small distances. However, this is overcome by the use of a damped Hermite charge, which provides the correct polarization response.  相似文献   

11.
The combination of quantum mechanics (QM) and molecular mechanics (MM) methods has become an alternative tool for many applications for which pure QM and MM are not suitable. The QM-MM method has been used for different types of problems, for example, structural biology, surface phenomena, and the liquid phase. In this paper, we have implemented these methods for vitamins, an important kind of biological molecule, and then compared results. The calculations were done by the full ab initio method (HF/3–21 g and HF/6–31 g) and QM-MM (ONIOM) method with HF(3–21 g)/AM1/UFF; then, we found that the geometry obtained by the QM-MM method is very accurate and this rapid method can be used in place of time consuming ab initio methods for large molecules. A comparison of energy values in the QM-MM and QM methods is given. We compare chemical shifts and conclude that the QM-MM method is a perturbed full QM method. The text was submitted by the authors in English.  相似文献   

12.
The relationship is investigated for QM/MM (quantum-mechanical/molecular-mechanical) systems between the fluctuations of the electronic state of the QM subsystem and of the solvation effect due to the QM-MM interaction. The free-energy change due to the electron-density fluctuation around its average is highlighted, and is evaluated through an approximate functional formulated in terms of distribution functions of the many-body coupling (pairwise non-additive) part of the QM-MM interaction energy. A set of QM/MM simulations are conducted in MM water solvent for QM water solute in ambient and supercritical conditions and for QM glycine solute in the neutral and zwitterionic forms. The variation of the electronic distortion energy of the QM solute in the course of QM/MM simulation is then shown to be compensated by the corresponding variation of the free energy of solvation. The solvation free energy conditioned by the electronic distortion energy is further analyzed with its components. It is found that the many-body contribution is essentially equal between the free energy and the average sum of solute-solvent interaction energy.  相似文献   

13.
14.
The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009 , 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self‐consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree–Fock–Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self‐consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave‐function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Version 9 of the Amber simulation programs includes a new semi-empirical hybrid QM/MM functionality. This includes support for implicit solvent (generalized Born) and for periodic explicit solvent simulations using a newly developed QM/MM implementation of the particle mesh Ewald (PME) method. The code provides sufficiently accurate gradients to run constant energy QM/MM MD simulations for many nanoseconds. The link atom approach used for treating the QM/MM boundary shows improved performance, and the user interface has been rewritten to bring the format into line with classical MD simulations. Support is provided for the PM3, PDDG/PM3, PM3CARB1, AM1, MNDO, and PDDG/MNDO semi-empirical Hamiltonians as well as the self-consistent charge density functional tight binding (SCC-DFTB) method. Performance has been improved to the point where using QM/MM, for a QM system of 71 atoms within an explicitly solvated protein using periodic boundaries and PME requires less than twice the cpu time of the corresponding classical simulation.  相似文献   

16.
A robust approach for dealing with electrostatic interactions for spherical boundary conditions has been implemented in the QM/MM framework. The development was based on the generalized solvent boundary potential (GSBP) method proposed by Im et al. [J. Chem. Phys. 114, 2924 (2001)], and the specific implementation was applied to the self-consistent-charge density-functional tight-binding approach as the quantum mechanics (QM) level, although extension to other QM methods is straightforward. Compared to the popular stochastic boundary-condition scheme, the new protocol offers a balanced treatment between quantum mechanics/molecular mechanics (QM/MM) and MM/MM interactions; it also includes the effect of the bulk solvent and macromolecule atoms outside of the microscopic region at the Poisson-Boltzmann level. The new method was illustrated with application to the enzyme human carbonic anhydrase II and compared to stochastic boundary-condition simulations using different electrostatic treatments. The GSBP-based QM/MM simulations were most consistent with available experimental data, while conventional stochastic boundary simulations yielded various artifacts depending on different electrostatic models. The results highlight the importance of carefully treating electrostatics in QM/MM simulations of biomolecules and suggest that the commonly used truncation schemes should be avoided in QM/MM simulations, especially in simulations that involve extensive conformational samplings. The development of the GSBP-based QM/MM protocol has opened up the exciting possibility of studying chemical events in very complex biomolecular systems in a multiscale framework.  相似文献   

17.
18.
19.
20.
Various quantum mechanical/molecular mechanical (QM/MM) geometry optimizations starting from an x-ray crystal structure and from the snapshot structures of constrained molecular dynamics (MD) simulations have been performed to characterize two dynamically stable active site structures of phosphodiesterase-5 (PDE5) in solution. The only difference between the two PDE5 structures exists in the catalytic, second bridging ligand (BL2) which is HO- or H2O. It has been shown that, whereas BL2 (i.e. HO-) in the PDE5(BL2 = HO-) structure can really bridge the two positively charged metal ions (Zn2+ and Mg2+), BL2 (i.e. H2O) in the PDE5(BL2 = H2O) structure can only coordinate Mg2+. It has been demonstrated that the results of the QM/MM geometry optimizations are remarkably affected by the solvent water molecules, the dynamics of the protein environment, and the electronic embedding charges of the MM region in the QM part of the QMM/MM calculation. The PDE5(BL2 = H2O) geometries optimized by using the QM/MM method in different ways show strong couplings between these important factors. It is interesting to note that the PDE5(BL2 = HO-) and PDE5(BL2 = H2O) geometries determined by the QM/MM calculations neglecting these three factors are all consistent with the corresponding geometries determined by the QM/MM calculations that account for all of these three factors. These results suggest the overall effects of these three important factors on the optimized geometries can roughly cancel out. However, the QM/MM calculations that only account for some of these factors could lead to considerably different geometries. These results might be useful also in guiding future QM/MM geometry optimizations on other enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号