首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus subtilis spores were exposed in vacuo to monochromatic UV radiation from synchrotron radiation in the wavelength range of 150 nm to 250 nm. Survival and frequency of mutation to histidine-independent reversion were analysed for three types of spores differing in DNA-repair capabilities. UVR spores (wild-type DNA repair capability) exhibited nearly equal sensitivity to the lethal effects of far-UV (220 nm and 250 nm) and of vacuum-UV radiation (150 and 165 nm), but showed marked resistance to 190 nm radiation. UVS spores (excision-repair and spore-repair deficient) and UVP spores (a DNA polymerase I-defective derivative of UVS) exhibited similar action spectra; pronounced sensitivity at 250 and 220 nm, insensitivity at 190 nm and a gradual increase of the sensitivity as the wavelength decreased to 165 nm. In all strains, the action spectra for mutation induction paralleled those for the inactivation, indicating that vacuum-UV radiation induced lethal and mutagenic damages in the spore DNA. The insensitivity of the spores to wavelengths around 190 nm may be explicable by assuming that radiation is absorbed by materials surrounding the core in which DNA is situated.  相似文献   

2.
Abstract— RNA-protein crosslinking by UV of different wavelengths was studied in 70S E. coli ribosomes by three techniques: sucrose gradient centrifugation in the presence of sodium dodecyl sulfate (SDS), RNA solubilization in LiCI-urea concentrated solutions and RNA adsorption on nitrocellulose filters in the presence of SDS.
The centrifugational technique shows that the crosslinking reaction occurs in two steps, the first one corresponding to the fixation of a few protein molecules on 16 or 23 s RNAs and the second one corresponding to extensive RNA-protein crosslinking so that most protein molecules are no longer released by SDS from 30S and 50S subunits.
The initial rates for the first step of crosslinking were evaluated by the solubilization and adsorption techniques at 7 (or 6) wavelengths of irradiation between 223 and 290 mm. The action spectrum for RNA solubilization in LiCl-urea is perturbed at 223 nm by the breakage of protein chains. The action spectrum for retention on nitrocellulose filters seems to be exempt of this defect. It corresponds at high wavelengths to a nucleic chromophore and at low wavelengths to a proteic one. This means that RNA-protein crosslinking may occur through RNA and protein excitation. The similarity between the action spectrum for RNA retention on nitrocellulose filters and the action spectrum for inactivation of ribosomal synthesis activity suggests that RNA-protein crosslinking may be responsible for inactivation of ribosomes by UV.  相似文献   

3.
We investigated the wavelength dependence of inactivation and membrane damage in yeast cells ( Saccharomyces cerevisiae ) in the range from 170 to 200 nm. Action spectra constructed at wavelengths from 155 to 250 nm using published data were nearly the same for the two types of effects below 200 nm, but differed from the absorption spectrum of DNA, indicating that major lethal damage occurred in the membrane, not in DNA. This conclusion was strongly supported by the finding that far-UV-sensitive cells, which lack excision repair, showed no enhanced sensitivity below 200 nm.  相似文献   

4.
Several ultraviolet (UV) action spectra that typify the responses of higher plants to irradiation by wavelengths between 280 nm and 380 nm are shown. An attempt is made to generate common spectra that may be used, at least temporarily, to represent the effects of UV on such important biological parameters as photosynthesis. The goal is to provide an estimate of plant response to solar UV and to the potential increase in ground level UV postulated for a depleted stratospheric ozone layer. Solar plant damage effectiveness curves are generated under "normal" solar UV conditions, and under an assumed UV increase corresponding to a 16% depletion in total ozone. Additional effects due to ozone depletion are concentrated in the UV-B region, especially at wavelengths between about 297 nm and 315 nm. Common features of these effectiveness curves are noted, and limitations are pointed out. As expected, no common spectrum has been found that can substitute for any specific spectrum nor that is unique enough to provide more than a limited first approximation of a plant damage spectrum. Additional information must be generated to fulfill this need.  相似文献   

5.
Abstract— The repair proficient human lymphoblastoid line (TK6) has been employed to construcr an action spectrum for the lethal action of ultraviolet (UV) radiation in the range254–434 nm and to examine possible interactions between longer (334, 365 and 405 nm) and shorter wavelength (254 and 313 nm) radiations. The action spectrum follows a DNA absorption spectrum fairly closely out to 360 nm. As in previously determined lethal action spectra for procaryotic and eucaryotic cell populations, there is a broad shoulder in the334–405 nm region which could reflect the existence of either (a) a non-DNA chromophore or (b) a unique photochemical reaction in the DNA over this region. Pre-treatment with radiation at 334 or 365 nm causes either a slight sensitivity to (low fluences) or protection from (higher fluences) subsequent exposure to radiation at a shorter wavelength (254 or 313 nm). Pre-irradiation at a visible wavelength (405 nm) at all fluence levels employed sensitizes the populations to treatment with 254 or 313 nm radiations. These interactions will influence the lethal outcome of cellular exposure to broad-band radiation sources.  相似文献   

6.
Abstract— Strains of Escherichia coli carrying the four possible combinations of the alleles nur, nur+, uvrAb, and uvrA + were either untreated or pretreated with a sublethal dose of H202 prior to inactivation with NUV radiation. Pretreated cells exhibited a greater resistance to NUV than did untreated cells. Pretreatment with H2O2 did not induce resistance to FUV radiation. The induction of resistance to NUV inactivation by H2O2 pretreatment apparently leads to protection against the damage caused by NUV radiation. Although pretreatment of cells with H202 leads to resistance of such cells to inactivation by H2O2 and NUV, survival of H2O2 treated bacteriophage PI cml clr100 is not enhanced when assayed on H2O2 pretreated E. coli host cells.  相似文献   

7.
Abstract— Pre-irradiation of stationary phase cells of Escherichia coli K-12 with broadband near-UV radiation potentiates the lethal effects of subsequent exposure to near-UV radiation plus hydrogen peroxide. Identical fluences failed to modulate killing due to far-UV radiation. These data indicate that biologically revelant levels of hydrogen peroxide may be generated in situ upon the near-UV irradiation of cells.  相似文献   

8.
Abstract— The induction of DNA single-strand breaks in normal human fibroblasts exposed to monochromatic wavelengths from 240–546 nm was measured by the alkaline elution assay. The cells were irradiated at 1°C to prevent both repair of induced breaks and formation of enzymatically induced breaks through excision repair. The cultures were also washed with and irradiated while suspended in phosphate buffered saline to prevent the formation of DNA damaging photoproducts from medium components. The action spectrum for DNA strand breakage was found to exhibit one peak at 265 nm, consistent with DNA absorption, and a second peak at 450 nm. The normalized action spectrum in the visible is similar to the normalized absorption spectrum for riboflavin, a known photosensitizing agent, implicating this molecule as the absorbing chromophore.  相似文献   

9.
Abstract— Exposure of ICR 2A cells to either 265, 289, 302 or 313 nm monochromatic UV wavelengths caused the induction of chromosome aberrations with chromatid gaps and breaks being the most common type of aberration detected. Treatment of U V-irradiated cells with photoreactivating light (PRL) resulted in a lower yield of aberrations demonstrating that pyrimidine dimers are involved in the formation of chromosome aberrations induced by the UV wavelengths tested. However, the decrease in the level of aberrations resulting from PRL treatment of 313 nm-irradiated cells was significantly less than for the other wavelengths indicating that non-dimer photoproducts may have played an important additional role in the induction of chromosome aberrations by this UV wavelength.  相似文献   

10.
Abstract— The effect of culture conditions on the lethal and mutagenic action of 254 nm (u.v.) and 320–400 nm (b.l.) light has been examined. Ten strains of Escherichin coli were used in these investigations. It was found that semi-dehydration in aerosols greatly enhanced the lethal and mutagenic actions of both U.V. and b.l., Mutations induced by U.V. were found to be of a random kind, while those produced by b.l. were specific and of a particular biochemical type depending on the strain of cell and its stage of development. The presence of oxygen during irradiation enhanced b.l. effects but had no effect on U.V. damage while anaerobic growth endowed the cells with added resistance to b.l. and u.v., Stationary phase cells of E. coli B/r were found to be mutated by b.l. specifically at a thymine locus and to be more sensitive than E. coli B to the inhibition by b.l. of respiration. Some mutations induced by b.l. in E. coli B/r were found to hinder the cells ability to carry out the photoreversal of U.V. damage. It is suggested that b.1. affects a specific piece of DNA which is in contact with the cytochrome chain of the cytoplasmic membrane and that this contact point between the cytochrome chain and DNA alters sequentially as the cell proceeds through its life cycle.  相似文献   

11.
Abstract— Exposure of ICR 2A frog cells to photoreactivating light after treatment with monochromatic ultraviolet (UV) radiation in the 252–313 nm range resulted in an increase in survival with similar photoreactivable sectors for each of the wavelengths tested. As photoreactivating enzyme is specific for the repair of pyrimidine dimers in DNA, these findings support the hypothesis that these are critical lesions responsible for killing of cells exposed to UV radiation in this wavelength range. The action spectra for cell killing and production of UV-endonuclease sensitive sites were similar to the DNA absorption spectrum though not identical. Because the number of endonuclease sensitive sites is a reflection of the yield of pyrimidine dimers, these data also suggest that the induction of dimers in DNA by UV radiation in the 252–313 nm range is the principal event leading to cell death.  相似文献   

12.
Transmission measurements of 2-deoxy-D-ribose, D-ribose-5-phosphate, ATP and DNA at 5 nm intervals were made with thin films in the wavelength region between 150 nm and 260 nm using synchrotron radiation. ATP and DNA exhibited two peaks in the absorption spectra around 260 nm and 190 nm, and a steep increase below 170 nm, while ribose phosphate and deoxyribose only exhibited the increase below 190 nm with no appreciable absorption above 190 nm. Since adenine does not exhibit the increase of absorption below 180 nm, these results indicate that the absorption of the sugar-phosphate group, rather than adenine, contributed to the increase below 170 nm in the absorption spectra of ATP and DNA.  相似文献   

13.
Abstract— Stationary phase cells from four Escherichia coli strains differing in near- (nur vs. nur +) and far-UV (recAl vs. recA+) radiation sensitivity were subjected to near-UV radiation (NUV) in 0.85% saline. Although the NUV-irradiated cultures yielded increased colony numbers following 24 h of liquid holding (LH), a fluctuation test for each experiment showed that the observed increases were not due to recovery but were in fact due to cell multiplication. The decline in viability observed after NUV with liquid holding using the fluctuation test was equivalent in strains RT2, 3 and 4 while the decline observed with RT1 was less marked. The discrepancy between LH involving cell densities of 108-109 and 1–4 cells/m/ can be resolved by assuming that with dense cell suspensions, NUV-induced membrane damage leads to leakage or lysis, supplying sufficient nutrients to allow growth of undamaged, surviving cells.  相似文献   

14.
Abstract— We have determined the dimerization and monomerization cross sections of the Thy < > Thy (cyclobutyl dimer of thymine and thymine) and the Cyt < > Thy (cyclobutyl dimer of cytosine and thymine) dimers in Escherichia coti [3H]-DNA ([3H]-thymine labeled DNA) at five wavelengths in the range 240–300 nm. It may be concluded from the dimerization action spectra for the two dimers that the excitation of Thy (thymine) is mainly responsible for the photochemical dimerization reaction in both cases. The calculated quantum yields of dimerization and monomerization are also presented in this paper and several questions, raised by the results obtained at 300 nm, are discussed.  相似文献   

15.
Abstract Lyophilized aged garlic extract has been incorporated at concentrations of 0.1%, 1% and 4% by weight into semipurified powdered diets and fed to hairless mice. Under moderate UVB exposure conditions resulting in 58% suppression of the systemic contact hypersensitivity response in control-fed mice, a dose-responsive protection was observed in the garlic-fed mice; contact hypersensitivity in the UVB-exposed mice fed 4% garlic extract was suppressed by only 19%. If the UVB exposure was replaced by topical application of one of a series of lotions containing increasing concentrations of cis -urocanic acid, a dose-responsive suppression of contact hypersensitivity was demonstrated in control-fed mice (urocanic acid at 25, 50, 100 and 200 μg per mouse resulting in 22–46% suppression). Mice fed a diet containing 1% aged garlic extract were partially protected from cis -urocanic acid-induced suppression of contact hypersensitivity, with greater protection from the lower concentrations of urocanic acid. Mice fed a diet containing 4% aged garlic extract were protected from all concentrations of urocanic acid. The results indicate that aged garlic extract contains ingredient(s) that protect from UVB-induced suppression of contact hypersensitivity and suggest that the mechanism of protection is by antagonism of the cis -urocanic acid mediation of this form of immunosuppression.  相似文献   

16.
Abstract— The reduced pyridine coenzymes NADPH and NADH produced superoxide anion("CK") from ground state molecular oxygen when irradiated by ultraviolet (UV) radiation extending from 290 to 405 nm as detected by cytochrome c reduction. Superoxide dismutase (SOD), but not catalase or heat-inactivated SOD, decreased the amount of cytochrome c reduced, indicating that O2 was responsible for the reduction of cytochrome c. Decreased oxygen tension during irradiation also inhibited production of O2. Quantum yields for the production of the anion were in the region of 10−7 to 10−9 mol per photon. These data indicate that NADH and NADPH can act as type II photosensitizers of both far-and near-UV radiation, and that the deleterious biological effects of exposure to these radiations such as erythema and dermal carcinogenesis may be mediated at least in part through the generation of O2.  相似文献   

17.
Abstract— Stationary cells of isogenic pairs of Escherichia coli K12 strains presumably differing only in the recA function have been inactivated with near-UV (300–400 nm) radiation. Based on near-UV inactivation kinetics, the strains can be divided into two discrete categories in which near-UV sensitivity does not necessarily correlate with far-UV sensitivity conferred by two different recA alleles. Lack of overlap between near-UV and far-UV ( recA ) sensitivity can be explained hy assuming that a different chromosomal gene ( nur ) controls near-UV sensitivity. Support for this hypothesis comes from a mating experiment in which four selected recombinants, isogenic with respect to auxotrophic markers, were identified exhibiting all four possible combinations of far-UV ( recA 1 vs recA + ) and near-UV sensitivity ( nur vs nur+ ). Transduction with phase P1 has shown that introduction of the recA 1 allele into a recA+ recipient does not affect the near-UV sensitivity of the recipient. Additional matings together with transduction experiments suggest that the nur gene is located at a position on the E. coli linkage map clearly separable from recA (minute 58).  相似文献   

18.
Abstract Uptake of ala in exponentially grown and starved cells of Escherichia coli B/r is inhibited by monochromatic far–UV (254–310 nm) and near UV (310–405 nm) light. The action spectrum for inhibition of ala uptake is similar to that found earlier for gly uptake, showing a maximum at 280 nm and a significant but much lower action throughout the near–UV region. The action spectra suggest that the chromophores for inactivation of ala and gly uptake lie in the carrier proteins and that these proteins are similar. Kinetic studies, in unirradiated bacteria, show that (a) the Km for ala uptake (11 μM) is about twice that for gly uptake (4.9 μM), (b) the Km for ala uptake does not change in the presence of gly, although the Kmax does decrease, and (c) other amino acids, such as ser and phe, have no effect on the Km or Vmax of the ala uptake system. These data suggest that ala and gly are transported by the same carrier protein, with the binding sites for ala and gly on different subunits.  相似文献   

19.
Abstract— Monochromatic red light generated by a tunable dye laser is currently being utilized for the treatment of solid tumors with hematoporphyrin derivative (HpD) photoradiation therapy (PRT). Experiments were performed using mammalian cells to determine the most efficient wavelength of red light (620 to 640 nm range) for HpD induced cellular photoinactivation. Decrease in the clonogenic potential of Chinese hamster ovary (CHO) cells was examined following both short (I h) and extended (12 h) HpD incubation times. Maximal photosensitization was observed with wavelengths ranging from 630 to 632.5 nm and the action spectra for cell killing matched the absorption spectra for HpD bound to cells. Similar observations were obtained following both short and extended HpD-cell incubation times. The potential relevance of these results as they relate to clinical HpD PRT are discussed.  相似文献   

20.
Abstract— Copper(II), in the presence of UV-B radiation(280–315 nm), can generate single-strand breaks in the sugar-phosphate backbone of pBR322 plasmid DNA. A low level of single-strand backbone breaks occurs in the presence of Cu(II) alone, but UV-B irradiation increases the rate by the more than 100-fold. Concomitant with the damage to the DNA backbone is a loss of transforming activity. Oxygen is required for generation of the single-strand breaks but not for the loss of transforming activity. A DNA glycosylase (Fpg), which participates in the repair of certain DNA nitrogenous base damage, does not repair plasmid DNA damaged by Cu(II). The hydroxyl radical scavenging compound DMSO is only somewhat effective at protecting the physical and biological properties of the DNA. These results with Cu(II) are compared to those obtained previously with pBR322 plasmid DNA in the presence of Fe(III) and UV-A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号