首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王勇 《高分子科学》2010,28(4):457-466
<正>The effect ofαphase nucleating agent(NA) 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol(DMDBS) on crystallization and physical properties of polypropylene/calcium carbonate(PP/CaCO_3) composites has been comparatively investigated.Compared with binary PP/CaCO_3 composites,in which CaCO_3 exhibits weak heterogeneous nucleation, inconspicuous reinforcement and toughening effects for PP,the introduction of a few amounts of DMDBS induces a great increase of the degree of crystallinity.Largely improved tensile properties,fracture toughness at relatively higher temperature and heat deformation temperature(HDT) are observed for DMDBS nucleated PP/CaCO_3 composites.  相似文献   

2.
表面接枝改性纳米二氧化硅填充聚丙烯的结晶行为   总被引:13,自引:0,他引:13  
应用差示扫描量热方法研究了纳米二氧化硅 (SiO2 )及其表面接枝改性对聚丙烯 (PP)结晶过程、等温与非等温结晶动力学的影响 ,并研究了上述等温结晶的熔融行为和平衡熔点 .研究发现纳米SiO2 具有明显的异相成核效应 ,能够提高PP的结晶温度、熔融温度、结晶度和结晶速率 ,但降低聚丙烯结晶的完善程度 .粒子的表面接枝处理 ,因改善了粒子与基体的亲和性而有利于粒子成核效应的提高 ,而且此效应尚与粒子的分散相关  相似文献   

3.
A detailed analysis of the effect of calcium carbonate nanoparticles on crystallization of isotactic polypropylene (iPP) is reported in this contribution. CaCO3 nanoparticles with different crystal modifications (calcite and aragonite) and particle shape were added in small percentages to iPP. The nanoparticles were coated with two types of compatibilizer (either polypropylene-g-maleic anhydride copolymer, or fatty acids) to improve dispersion and adhesion with the polymer matrix.It was found that the type of coating agent used largely affects the nucleating ability of calcium carbonate towards formation of polypropylene crystals. CaCO3 nanoparticles coated with maleated polypropylene can successfully promote nucleation of iPP crystals, whereas the addition of nanosized calcium carbonate coated with fatty acids delays crystallization of iPP, the effect being mainly ascribed to the physical state of the coating in the investigated temperature range for crystallization of iPP, as well as to possible dissolution by fatty acids of heterogeneities originally present in the polypropylene matrix.  相似文献   

4.
A layer multiplying coextrusion process was used to produce multilayered polypropylene/polystyrene (PP/PS) films with various nucleating agents. When heated into the melt, the thin PP layers broke up into submicron PP droplets that exhibited fractionated crystallization. If the initial PP layers were 20 nm or less, the resulting droplets exhibited exclusively homogeneous nucleation. If a nucleating agent was added, the systematic departure from homogeneous nucleation provided insight into the nature of the heterogeneous nucleation. In this study, we used thermal analysis, atomic force microscopy (AFM), and wide angle X‐Ray scattering (WAXS) to examine the effect of two nucleating agents. We confirmed with WAXS and AFM that a soluble sorbitol nucleating agent for the PP α‐form operates in three concentration regimes as proposed in a previous study. Morphologically, homogeneous nucleation of the submicron droplets produced a granular texture. The correlation length from small‐angle X‐Ray scattering (SAXS) suggested that the grains contained 1–3 mesophase domains. Drawing on classical nucleation theory, the critical size nucleus of an individual mesophase domain was estimated to be about 2 nm3, which was considerably smaller than the mesophase domain. This pointed to mesophase crystallization that included the processes of nucleation and growth. Additional experiments were performed with nucleating agents for the PP β‐form. However, they were not effective in nucleating crystallization of the droplets, presumably because they were essentially insoluble in PP and the nucleating particles were too large to be accommodated in the PP droplets. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

5.
共沉淀法合成复合碳酸钙及其形貌和晶型的研究   总被引:1,自引:0,他引:1  
岳林海  金达莱  徐铸德 《化学学报》2003,61(10):1587-1591
以硬脂酸钠盐皂化液为介质,共沉淀法合成碳酸钙/硬脂酸钙复合物。SEM, XRD等测试手段表明:不同反应温度及有机物尝试条件下得到的复合物具有多变的 外观外形貌;其中碳酸钙以方妥石和球霰石的混晶形式存在,两者经例呈一定变化 规律,并对其进行了合理的解释,认为有机物的浓度和温度不同,使其在溶液中形 成的胶束结构及其亲水基团有不同排列,并以不同匹配方式影响碳酸钙结晶行为, 从而影响复合碳酸钙的形貌和晶型。  相似文献   

6.
In this work, the crystallization and melting behaviors of different polypropylene (PP) materials containing a certain amount of graphene, β-phase nucleating agent (β-NA), and their mixture, respectively, were comparatively investigated. The results showed that graphene exhibited the typical sheet structure in the PP matrix, and the presence of β-NA did not change the dispersion of graphene apparently. Both graphene and β-NA exhibited great nucleating effect for the crystallization of PP. However, the nucleation efficiency of β-NA was much larger than that of graphene. With the simultaneous presence of graphene and β-NA, the crystallization ability of PP matrix was greatly improved, which indicated that there was a synergistic effect between graphene and β-NA in accelerating crystallization of PP matrix. Furthermore, it was proved that the synergistic effect was greatly dependent upon the crystallization conditions. The higher the isothermal crystallization temperature or the bigger the cooling rate, the more apparent the synergistic effect was.  相似文献   

7.
Sodium benzoate (SB), a conventional nucleating agent of α‐phase isotactic polypropylene (iPP) was discovered to induce the creation of β‐phase iPP under certain crystalline conditions. Polarized optical microscopy (POM) and wide angle X‐ray diffraction (WAXD) were carried out to verify the versatile nucleating activity of SB and investigate the influences of SB's content, isothermal crystallization temperature, and crystallization time on the formation of β‐phase iPP. The current experimental results indicated that, under isothermal crystallization conditions, SB showed peculiar nucleating characteristics on inducing iPP crystallization which were different from those of the commercial β form nucleating agent (TMB‐5). The content of β crystal form of iPP nucleated with SB (PP/SB) increased initially with the increase of crystallization temperature, nucleating agent (SB) percentage or crystallization time, reached a maximum value, and then decreased as the crystallization temperature, nucleating agent percentage or crystallization time further increased. While the content of β crystal form of iPP nucleated with TMB‐5 (PP/TMB‐5) showed a completely different changing pattern with the crystallization conditions. The obvious difference of the two kinds of nucleating agents on inducing iPP crystallization can be explained by the versatile nucleating ability of SB. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1183–1192, 2008  相似文献   

8.
The crystallization kinetics of polypropylene (PP) with or without sodium benzoate as a nucleating agent were investigated by means of DSC and polarized optical microscopy in isothermal and nonisothermal modes. A modified Avrami equation was applied to the kinetic analysis of isothermal crystallization. The addition of the nucleating agent up to its saturation concentration increased the crystallization temperature by 15 °C and shortened both the isothermal and nonisothermal crystallization half‐times. It was concluded that the sodium benzoate acted as a good nucleating agent for α‐form PP. By adding the nuclefier to PP, adequately controlled spherulites increased the mechanical properties including especially the Izod impact strength and shortened cycle time of PP. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1001–1016, 2001  相似文献   

9.
超细CaCO_3的粒子尺寸对PP结晶行为的影响   总被引:14,自引:0,他引:14  
The effects of CaCO3 on the crystallization behavior of polypropylene (PP) were studied by means of DSC and WAXD.The average sizes of the CaCO3 powders used were 0.1μm (UC) and 0.5μm (GC),respectively.The PP/CaCO3 composites at compositions of 1phr and 10 phr were investigated.The results showed that the addition of CaCO3 reduced the supercooling,the rate of nucleation and the overall rate of crystallization (except for the 10phr UC/PP sample).The crystallinity of PP was increased and the size distribution of the crystallites of α-PP was broadened.On the other hand,the crystallization rate of 10phr UC/PP is 1.5 times higher than that of neat PP.It has an overall rate of crystallization 2 times as much as that of the neat PP and has the maximum crystallinity.The sizes of crystallites and the unit cell parameters of α-PP were varied by the addition of CaCO3.β-PP was formed by addition of GC and was not detected by addition of UC.The differences of crystallization behaviors of PP might be attributed to the combined effects of the content and size of CaCO3 filled.  相似文献   

10.
The effect of a sorbitol nucleating agent on crystallization of polypropylene (PP) in droplets was studied. Layer‐multiplying coextrusion was used to fabricate assemblies of 257 layers, in which PP nanolayers alternated with thicker polystyrene (PS) layers. The concentration of a commercial nucleating agent, Millad 3988 (MD) in the layers was varied up to 2 wt %. When the assembly was heated into the melt, interfacial driven breakup of the 12 nm PP layers produced a dispersion of submicron PP particles in a PS matrix. Analysis of optical microscope images and atomic force microscope images indicated that the particle size was not affected by the presence of MD. The crystallization behavior of the particle dispersion was characterized by thermal analysis. In the absence of a nucleating agent, the submicron particles crystallized almost exclusively by homogeneous nucleation at about 40 °C. Addition of a nucleating agent to the PP layers offered a unique opportunity to study the nature of heterogeneous nucleation. Nucleation by MD resulted in fractionated crystallization of the submicron PP particles. The concentration dependence of the multiple crystallization exotherms was interpreted in terms of the binary polypropylene‐sorbitol phase diagram. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1788–1797, 2007  相似文献   

11.
复合成核剂对聚丙烯结晶行为的影响   总被引:8,自引:0,他引:8  
以超细橡胶粒子与有机磷酸盐成核剂复配的方法制备了一种新型复合成核剂,通过示差扫描量热法(DSC)比较了复合成核剂改性PP以及有机磷酸盐成核剂改性PP的结晶温度、等温结晶行为及等温结晶动力学;利用扫描电子显微镜(SEM)的能谱附件和透射电子显微镜(TEM)研究了复合成核剂的微观形态及其在PP中的分散情况.研究结果表明,复合成核剂中超细橡胶粒子作为载体使有机磷酸盐成核剂附着在其表面,提高了成核剂在聚丙烯中的分散性,因而提高了成核剂的成核效率,当成核剂用量较小时,即可明显提高PP的结晶速率和力学性能.  相似文献   

12.
The influence of two concentrations of clay nanoparticles on the nonisothermal crystallization behavior of the intercalated polypropylene-clay nanocomposites is investigated here. It is observed that the crystallization peak temperature (Tp) of PP-clay nanocomposites is marginally higher than neat PP at various cooling rates. Furthermore, the half-time for crystallization (t0.5) decreased with increase in clay content, implying the nucleating role of clay nanoparticles. The nonisothermal crystallization data is analyzed using Avrami, Ozawa and Mo and coworkers methods. The validity of kinetic models on the nonisothermal crystallization process of PP-clay nanocomposites is discussed. The approach developed by Mo and coworkers successfully describes the nonisothermal crystallization behavior of PP and PP-clay nanocomposites. The activation energy for nonisothermal crystallization of pure PP and PP-clay nanocomposites based on Kissinger method is evaluated.  相似文献   

13.
硬脂酸镧复合物对聚丙烯β晶型的诱导作用   总被引:23,自引:0,他引:23  
F等规聚丙烯(iPP)的分子链均为3螺旋构型,可形成α,β,γ,δ和拟六方态等5种晶体结构,β晶型(六方)的PP具有良好的韧性^[1,2],近年来因在增韧及制造电容器粗化膜方面有独特性能而受到重视,但β晶型在热力学上是准稳定,动力上是不利于生成的一种晶型[3],只有利用特殊方式才能获得,如选取合适的熔融、结晶温度及一定的温度梯度^[4],剪切取向^[5],使用成核剂[3,6~12]等,前两种方法不易实施,添加能诱导生成β晶型的特效成核剂是目前获得较高含量β晶型PP的可行途径,目前已知的β成核剂主要有两类,一类是少数具有准平面结构的稠环化合物,如γ晶型喹吖啶酮红染料E3B^[6]和三苯二噻^[7]等,另一类是元素周期表中少数第IIa 族金属的某些盐类及其二元羧酸的复合物,典型的例子如钙的亚氨酸盐^[8],硬脂酸钙/癸脂酸钙/癸二酸体系等^[3,9,12].  相似文献   

14.
采用双螺杆挤出制备了玻璃纤维增强PET(FRPET)/稀土镧化合物改性超细碳酸钙(UCaCO3-La3 )复合材料,将UCaCO3-La3 对FRPET性能的影响与有机钠盐类成核剂NA做了对比.DSC分析结果表明,各成核剂均使FRPET的结晶温度和结晶度提高,结晶峰半峰宽变窄,熔融峰半峰宽变宽,且镧化合物对FRPET的双熔融峰有引发作用.根据过冷温度和过热温度,成核剂的结晶成核能力大小顺序为UCaCO3-5La3 >UCaCO3-10La3 >NA>UCaCO3-1La3 .UCaCO3-La3 的加入明显提高了FRPET的力学性能,并对FRPET综合性能的改善具有显著效果.  相似文献   

15.
本工作利用JJY-1型结晶速率仪对几种典型的阻燃聚丙烯共混体系的结晶行为进行了研究,发现不同的阻燃剂对PP的结晶行为有不同的影响。阻燃剂APP对PP的结晶具有较强的成核作用。但过量的APP对PP结晶生长有明显的阻碍作用。阻燃剂TBE对PP结晶也体现异相成核作用。阻燃剂PER由于增加PP结晶过程的分子链段折叠能而对PP结晶起阻碍作用。阻燃剂TPP对PP的结晶行为影响较弱。  相似文献   

16.
Feasibility studies directed at the parallel increase in the elastic modulus and impact toughness of polypropylene via introduction of ultradispersed CaCO3 particles with sizes of 100 (Socal U1S2) and 60 nm (Socal 312V) have been performed. The effects of the content and sizes of CaCO3 particles and the nature of a surfactant on the character of distribution of particles, the thermophysical characteristics of the polymer matrix, and the mechanical characteristics and heat resistance of the nanocomposites are analyzed. Microscopic studies reveal that nanoparticles show a tendency toward structuring. DSC studies have proved the nucleating action of ultrafine particles during the crystallization of PP. For the composites containing 15 vol % of Socal 312V CaCO3 nanoparticles, the increase in the tensile elastic modulus achieves its maximum; depending on the nature of the surfactant, the reinforcing effect increases by 70-40%. As compared to the initial PP, the presence of ultrafine particles in the composites prevents a decrease in the storage modulus of PP with increasing temperature from 0 to 50°C; as a result, the reinforcing effect increases from 30-40% at temperatures below the glass transition temperature to 40–75% at 50°C. For the nanocomposites with U1S2 in the presence of Triton X-100 or fluorinated alcohol telomer, the impact toughness increases over the entire filler content interval; when the filler concentration is 15 vol %, the impact toughness of nanocomposites is higher than that of the initial PP by factors of 3 and 4.5, respectively. It has been found that nanocomposites containing 5 vol % CaCO3 nanoparticles show the effect of thermal stabilization, which comes up to about 50°C.  相似文献   

17.
The nanocomposites were prepared using melt intercalation method and the effects of the processing conditions on silver nanoparticles dispersion were investigated by transmission electron microscopy. Non-isothermal crystallization kinetics of virgin polypropylene (PP) and its nanocomposites have been evaluated using differential scanning calorimetric technique. The non-isothermal crystallization melt data were analyzed using macro kinetics equation with the help of Avrami, Malkin, and Mo’s models. The crystallization rate increased with the increasing of cooling rates for virgin PP and nanocomposite, but the crystallization of nanocomposite was faster than that of PP at a given cooling rate. The activation energy for non-isothermal crystallization of virgin polymer and nanocomposites based on Kissinger method has been determined to be 186 and 211 kJ/mol, respectively. Transmission electron microscopy analysis reveals balanced dispersion and presence of some silver nanoparticles aggregates, which act as a heterogeneous nucleating agent during the crystallization of the nanocomposite.  相似文献   

18.
In the present work, α‐form nucleating agent 1,3:2,4‐bis (3,4‐dimethylbenzylidene) sorbitol (DMDBS, Millad 3988) is introduced into the blends of polypropylene/ethylene–octene copolymer (PP/POE) blends to study the effect of the nucleating agent on the toughness of PP/POE blends through affecting the crystallization behavior of PP matrix. Compared with the PP/POE blends, in which the toughness of the blends increases gradually with the increasing content of POE and only a weak transition in toughness is observed, addition of 0.2 wt % DMDBS induces not only the definitely brittle‐ductile transition at low POE content but also the enhancement of toughness and tensile strength of the blends simultaneously. Study on the morphologies of impact‐fractured surfaces suggests that the addition of a few amounts of DMDBS increases the degree of plastic deformation of sample during the fracture process. WAXD results suggest that POE induces the formation of the β‐form crystalline of PP; however, DMDBS prevents the formation of it. SEM results show that the addition of DMDBS does not affect the dispersion and phase morphologies of POE particles in PP matrix. DSC and POM results show that, although POE acts as a nucleating agent for PP crystallization and which enhances the crystallization temperature of PP and decreases the spherulites size of PP slightly, DMDBS induces the enhancement of the crystallization temperature of PP and the decrease of spherulites size of PP more greatly. It is concluded that the definitely brittle–ductile transition behavior during the impact process and the great improvement of toughness of the blends are attributed to the sharp decrease of PP spherulites size and their homogeneous distribution obtained by the addition of nucleating agent. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 577–588, 2008  相似文献   

19.
利用DSC和偏光显微镜等手段研究了部分成核剂对聚丙烯均聚物(PP)、低乙烯含量聚丙烯共聚物及聚丙烯/聚乙烯(PP/PE)共混物结晶行为的影响,结果表明所用成核剂对PP和改性PP具有一定的普适性。聚丙烯共聚物中,由于链结构规整性变差,成核剂的作用显得特别突出,而PP/PE共混物中,由于成核剂向PE相迁移而使其对PP结晶的成核效率降低。  相似文献   

20.
In the present research, the isothermal and non-isothermal crystallization of polypropylene (PP) phase in PP-rich poly(acrylonitrile–butadiene–styrene)/polypropylene (ABS/PP) blends was studied. The effect of nanofillers’ incorporation and specialty of organically modified montmorillonite (OMMT) and graphene, into the prepared blends on the isothermal and non-isothermal crystallization of PP phase, were investigated. Moreover, kinetic study of their isothermal crystallization process was carried out, by applying the Avrami equation. The addition of ABS to the PP matrix increased the crystallization rate of PP at 130 °C. The incorporation of OMMT in pure PP accelerated slightly the crystallization process, whereas in ABS/PP blends, it seemed to retard crystallization, due to interactions between ABS phase and organoclay. The incorporation of graphene in pure PP accelerated impressively its isothermal crystallization, while the addition of ABS in graphene/PP nanocomposite slowed down the crystallization rate of PP. The effect of ABS and nanofillers, separately or in combination, on the crystallization of PP phase was reflected on the kinetic parameters of the Avrami equation. Regarding the non-isothermal crystallization, ABS/PP blends presented higher crystallization temperature (T c) compared to pure PP. The organoclay reinforcement did not have any obvious effect on this temperature, whereas graphene caused significant increase, acting as nucleating agent. The presence of ABS to PP increased the concentration of the β-crystalline phase, reaching its maximum value at 30 mass% ABS content. The organoclay decreased the β-PP in ABS/PP blends, whereas graphene eliminated it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号