首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tridentate bis-phosphinimine ligands O(1,2-C(6)H(4)N=PPh(3))(2)1, HN(1,2-C(2)H(4)N=PR(3))(2) (R = Ph 2, iPr 3), MeN(1,2-C(2)H(4)N=PPh(3))(2)4 and HN(1,2-C(6)H(4)N=PPh(3))(2)5 were prepared. Employing these ligands, monometallic Pd and Ni complexes O(1,2-C(6)H(4)N=PPh(3))(2)PdCl(2)6, RN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][Cl] (R = H 7, Me 8), [HN(1,2-CH(2)CH(2)N=PiPr(3))(2)PdCl][Cl] 9, [MeN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][PF(6)] 10, [HN(1,2-CH(2)CH(2)N=PPh(3))(2)NiCl(2)] 11, [HN(1,2-CH(2)CH(2)N=PR(3))(2)NiCl][X] (X = Cl, R = iPr 12, X = PF(6), R = Ph 13, iPr 14), and [HN(1,2-C(6)H(4)N=PPh(3))(2)Ni(MeCN)(2)][BF(4)]Cl 15 were prepared and characterized. While the ether-bis-phosphinimine ligand 1 acts in a bidentate fashion to Pd, the amine-bis-phosphinimine ligands 2-5 act in a tridentate fashion, yielding monometallic complexes of varying geometries. In contrast, initial reaction of the amine-bis-phosphinimine ligands with base followed by treatment with NiCl(2)(DME), afforded the amide-bridged bimetallic complexes N(1,2-CH(2)CH(2)N=PR(3))(2)Ni(2)Cl(3) (R = Ph 16, iPr 17) and N(1,2-C(6)H(4)N=PPh(3))(2)Ni(2)Cl(3)18. The precise nature of a number of these complexes were crystallographically characterized.  相似文献   

2.
The bis(PNP)-donor pincer ligand 1,4-C(6)H(4){N(CH(2)CH(2)PPh(2))(2)}(2), 1, contains weakly basic nitrogen donor atoms because the lone pairs of electrons are conjugated to the bridging phenylene group, and this feature is used in the synthesis of oligomers and polymers. The complexes [Pd(2)X(2)(mu-1)](OTf)(2), X=Cl, Br or OTf, contain the ligand 1 in bis(pincer) binding mode (mu-kappa(6)-P(4)N(2)), but [Pd(4)Cl(6)(mu(3-)1)(2)]Cl(2) contains the ligand in an unusual unsymmetrical mu(3)-kappa(5)-P(4)N binding mode. The bromide complex is suggested to exist as a polymer [{Pd(2)Br(4)(mu(4)-1)}(n)] with the ligands 1 in mu(4)-kappa(4)-P(4) binding mode. The methylplatinum(II) complexes [Pt(2)Me(4)(mu-1)] and [Pt(2)Me(2)(mu-1)](O(2)CCF(3))(2) contain the ligand in mu-kappa(4)-P(4) and mu-kappa(6)-P(4)N(2) bonding modes, while the silver(I) complex [Ag(2)(O(2)CCF(3))(2) (mu-1)] contains the ligand 1 in an intermediate bonding mode in which the nitrogen donors are very weakly coordinated. The complexes [Pd(2)(OTf)(2)(mu-1)](OTf)(2) and [Ag(2)(O(2)CCF(3))(2)(mu-1)] react with 4,4'-bipyridine to give polymers [Pd(2)(micro-bipy)(mu-1)](OTf)(4) and [Ag(2)(mu-bipy)(mu-1)](O(2)CCF(3))(2).  相似文献   

3.
The phosphinito-oxazoline ligand 4,4-dimethyl-2-[methoxy(diphenylphosphine)]-4,5-dihydrooxazole (2a) and the phosphonite-oxazoline ligand 4,4-dimethyl-2-[methoxy(6H-dibenz[c,e][1,2]oxaphosphorin)]-4,5-dihydrooxazole (8a) were prepared by deprotonation of (4,5-dihydro-4,4-dimethyloxazol-2-yl)methanol (1a) and reaction with the corresponding P-Cl function, similar to the ligands 2b (4,4-dimethyl-2-[1-oxy(diphenylphosphine)-1-methylethyl]-4,5-dihydrooxazole) and 8b (4,4-dimethyl-2-[1-oxy(6H-dibenz[c,e][1,2]oxaphosphorin)-1-methylethyl]-4,5-dihydrooxazole) reported previously. These ligands react with [PdClX(COD)] to give complexes of the type [PdClX(P,N)] (3a P,N = 2a, X = Cl; 4a P,N = 2a, X = Me; 4b P,N = 2b , X = Me; 9a P,N = 8a, X = Cl; 9b P,N = 8b, X = Cl; 10a P,N = 8a, X = Me; 10b P,N = 8b, X = Me). Complexes 4a,b and 10a,b reacted with AgCF(3)SO(3) to yield [PdMe(P,N)OSO(2)CF(3)] 5a,b and 11a,b, respectively. From the stepwise insertion reaction of CO and ethylene into the Pd-C bond of 5a and 11a,b, the alkyl ketone chelate complexes [Pd{CH(2)CH(2)C(O)Me}(P,N)]CF(3)SO(3) 7a and 14a,b respectively, have been isolated and spectroscopically characterized. Complexes 3a.CH(2)Cl(2), 5a, 9b, 10a,b, [PdMe(H(2)O)(P,N)]CF(3)SO(3) 12b, (P,N = 8b) and 14a,b have also been characterized by X-ray crystallography and the structures of 14a,b represent still rare examples of structurally characterized CO/ethylene coupling products.  相似文献   

4.
Reactions of diphenyllead(IV) chloride with benzil bis(thiosemicarbazone) (L1H6) and benzil bis(4-methyl-3-thiosemicarbazone) (L1Me2H4) afforded the first complexes containing the diphenyllead(IV) moiety with bis(thiosemicarbazone) ligands. The new complexes show diverse structural characteristics depending on the ligand and the working conditions. Complexes [PbPh2Cl(L1H5)].3H2O (1) and [PbPh2Cl(L1Me2H3)] (3) are mononuclear species in which the ligands are partially deprotonated and the lead atom has a C2N2S2Cl environment in a distorted pentagonal bipyramid coordination geometry. Complex [PbPh(L1Me2H2)](2).2H2O (4) was also obtained, which contains two lead atoms in a binuclear structure with a C2N2S3 coordination sphere for each lead atom, since both dideprotonated ligands act as N2S2 chelate and as sulfur bridge. Reaction from L1H6, in the same conditions in which complex 4 was prepared, gave a mixture of products: the lead (II) complex [Pb(L1H4)]2 (2) and [PbPh3Cl]n. Reactions with the cyclic molecules 5-methoxy-5,6-diphenyl-4,5-dihydro-2H-[1,2,4]-triazine-3-thione (L2H2OCH3) and 5-methoxy-4-methyl-5,6-diphenyl-4,5-dihydro-2H-[1,2,4]-triazine-3-thione (L2MeHOCH3) were also explored. In all the complexes, the ligands are deprotonated. The complexes [PbPh2(L2)2] (5) and [PbPh2(L2MeOCH3)2] (7) present the same characteristics. The X-ray structure of 5 shows a distorted octahedral geometry around the lead atom, with the ligand molecules acting as NS chelates, but the nitrogen bonded to the metal is different; one of the triazines shows a novel behavior, since the nitrogen atom of the new imine group formed is the one that is bonded to the lead center, being a good example of linkage isomerism. The complex [PbPh2Cl(L2)] (6), which was also isolated, could not be crystallized. All the complexes were characterized by elemental analysis, mass spectrometry, IR and 1H, 13C, and 207Pb NMR spectroscopy and some of them by X-ray diffraction studies.  相似文献   

5.
Reaction of [ReOCl3(PPh3)(2)] with HCpz(3) (pz = pyrazole) in dichloromethane leads to the formation of a new Re(iv) complex [ReCl3(HCpz3)]X (X=Cl, [ReO4]) with loss of the rhenium-oxo group. We also report a convenient, high-yield synthetic route to complexes of the type [ReOXn(L)](3-n)+ (X=Cl, Br, n = 2, 3) by the reaction of bis(pyrazolylmethane) and bis(pyrazolylacetate) ligands with [ReOCl3(PPh3)2]. Dinuclear complexes containing the O=Re-O-Re=O group were also isolated and structurally characterised. We have also investigated the reactions of these ligands with diazenide precursors and isolated and characterised complexes of the type [ReClx(N2Ph) (L)(PPh3)] (x = 1,2). The potential applications of these complexes as radiopharmaeuticals is discussed.  相似文献   

6.
A new class of tetraiminetetraamide macrocyclic (Ph4[20]tetraene, N8O4, and Ph6[20]tetraene, N8O4) complexes have been prepared through the metal ion controlled reaction of 1,2-diphenylethane-1,2-dione dihydrazone (DPEDDH) with succinic acid [ML1X2] or phthalic acid [ML2X2] [M=Mn, Co, Ni, Cu or Zn; X=Cl or NO3]. The structures of the complexes have been elucidated on the basis of i.r, 1H-n.m.r, e.p.r. and electronic spectral data and conductance, as well as magnetic, properties. An octahedral geometry is assigned for all the complexes, involving coordination of the all-imine nitrogens.  相似文献   

7.
Substitution reactions of the complexes [Pd(bpma)(H2O)]2+, [Pd(bpma)Cl]+, [Pd(dien)(H2O)]2+ and [Pd(dien)Cl]+, where bpma = bis(2-pyridylmethyl)amine and dien = diethylentriamine or 1,5-diamino-3-azapentane, with some nitrogen-donor ligands such as triazole, pyrazole, pyrimidine, pyrazine and pyridazine, were studied in an aqueous 0.10 M NaClO4 at pH 2.8 using variable-temperature and -pressure stopped-flow spectrophotometry. The second-order rate constants indicate that the Pd(II) complexes of bpma, viz. [Pd(bpma)(H2O)]2+ and [Pd(bpma)Cl]+, are more reactive than the complexes of dien, viz. [Pd(dien)(H2O)]2+ and [Pd(dien)Cl]+. Also, the aqua complexes, [Pd(bpma)(H2O)]2+ and [Pd(dien)(H2O)]2+, are much more reactive than the corresponding chloro complexes. The most reactive nucleophile of the five-membered rings is triazole and for the six-membered rings the most reactive one is pyridazine. Activation parameters were determined for all reactions and the negative entropies and volumes of activation (Delta S++, Delta V++) support an associative ligand substitution mechanism. The crystal structure of [Pd(bpma)(H2O)](ClO4)2.2H2O was determined by X-ray diffraction. Crystals are monoclinic with the space group P2(1)/c. The coordination geometry of [Pd(bpma)(H2O)]2+ is distorted square-planar. The Pd-N (central) bond distance, 1.958(5) A, is shorter than the other two Pd-N distances, 2.007(5) and 2.009(5) A. The Pd-O distance is 2.043(5) A.  相似文献   

8.
Complexes [Pd{C,N-Ar{C(Me)=NOH}-2}(μ-Cl)](2) (1) with Ar = C(6)H(4), C(6)H(3)NO(2)-5 or C(6)H(OMe)(3)-4,5,6, were obtained from the appropriate oxime, Li(2)[PdCl(4)] and NaOAc. They reacted with neutral monodentate C-, P- or N-donor ligands (L), with [PPN]Cl ([PPN] = Ph(3)P=N=PPh(3)), with Tl(acac) (acacH = acetylacetone), or with neutral bidentate ligands N^N (tetramethylethylenediamine (tmeda), 4,4'-di-tert-butyl-2,2'-bipyridine ((t)Bubpy)) in the presence of AgOTf or AgClO(4) to afford complexes of the types [Pd{C,N-Ar{C(Me)=NOH}-2}Cl(L)] (2), [PPN][Pd{C,N-Ar{C(Me)=NOH}-2}Cl(2)] (3), [Pd{C,N-Ar{C(Me)=NOH}-2}(acac)] (4) or [Pd{C,N-Ar{C(Me)=NOH}-2}(N^N)]X (X = OTf, ClO(4)) (5), respectively. Complexes 1 reacted with bidentate N^N ligands in the presence of a base to afford mononuclear zwitterionic oximato complexes [Pd{C,N-Ar{C(Me)=NO}-2}(N^N)] (6). Dehydrochlorination of complexes 2 by a base yielded dimeric oximato complexes of the type [Pd{μ-C,N,O-Ar{C(Me)[double bond, length as m-dash]NO}-2}L](2) (7). The insertion of XyNC into the Pd-C(aryl) bond of complex 2 produced the mononuclear iminoaryloxime derivative [Pd{C,N-C(=NXy)Ar{C(Me)=NOH}-2}Cl(CNXy)] (8) which, in turn, reacted with [AuCl(SMe(2))] to give [Pd{μ-N,C,N-C(=NXy)Ar{C(Me)=NOH}-2}Cl](2) (9) with loss of XyNC. Some of these complexes are, for any metal, the first containing cyclometalated aryloximato (6, 7) or iminoaryloxime (8, 9) ligands. Various crystal structures of complexes of the types 2, 3, 6, 7, 8 and 9 have been determined.  相似文献   

9.
Treatment of UCl4 with the hexadentate Schiff bases H2Li in thf gave the expected [ULiCl2(thf)] complexes [H2Li=N,N'-bis(3-methoxysalicylidene)-R and R = 2,2-dimethyl-1,3-propanediamine (i= 1), R = 1,3-propanediamine (i= 2), R = 2-amino-benzylamine (i= 3), R = 2-methyl-1,2-propanediamine (i= 4), R = 1,2-phenylenediamine (i= 5)]. The crystal structure of [UL4Cl2(thf)] (4) shows the metal in a quite perfect pentagonal bipyramidal configuration, with the two Cl atoms in apical positions. Reaction of UCl4 with H4Li in pyridine did not afford the mononuclear products [U(H2Li)Cl2(py)x] but gave instead polynuclear complexes [H4Li=N,N'-bis(3-hydroxysalicylidene)-R and R = 1,3-propanediamine (i= 6), R = 2-amino-benzylamine (i= 7) or R = 2-methyl-1,2-propanediamine (i= 8)]. In the presence of H4L6 and H4L7 in pyridine, UCl4 was transformed in a serendipitous and reproducible manner into the tetranuclear U(iv) complexes [Hpy]2[U4(L6)2(H2L6)2Cl6] (6a) and [Hpy]2[U4(L7)2(H2L7)2Cl6][U4(L7)2(H2L7)2Cl4(py)2] (7), respectively. Treatment of UCl4 with [Zn(H2L6)] led to the formation of the neutral compound [U4(L6)2(H2L6)2Cl4(py)2] (6b). The hexanuclear complex [Hpy]2[U6(L8)4Cl10(py)4] (8) was obtained by reaction of UCl4 and H4L8. The centrosymmetric crystal structures of 6a.2HpyCl.2py, 6b.6py, 7.16py and 8.6py illustrate the potential of Schiff bases as associating ligands for the design of polynuclear assemblies.  相似文献   

10.
The series of dinuclear 4,4′‐bis(hexyloxy)azobenzene, [H(Azo‐6)], cyclopalladated complexes of general formula [Azo‐6)Pd(µ‐X)]2, (X = Cl, Br, I, N3, SCN, OAc) and [Azo‐6)2Pd2(µ‐Ox)] (Ox = oxalate) have been synthesized and investigated for mesomorphism and spectroscopic properties. Single‐crystal X‐ray analysis of the dinuclear bromo‐ and iodo‐bridged complexes has been performed. The structural data, compared with those of the known homologous chloro compound, show that all the [Azo‐6)Pd(µ‐X)]2)] (X = Cl, Br, I) molecules crystallize in the monoclinic space group P21/c and are isomorphous. They are arranged in slipped pairs with intermolecular non‐bonding Pd–Pd contacts ranging from 3.668(1) Å(X = Cl) to 3.758(3) Å(X = I). The different nature of the bridging group allows variation of the distance between the palladium atoms and the bond environment experienced by the metal centers. Thus, this comparative study reveals that the effectiveness of the bridging group in promoting thermotropic mesophases is greater for chloride, bromide, azide or oxalate than for iodide, thiocyanate or acetate. The greatest range of liquid‐crystal behavior was displayed by [Azo−6)2Pd2(µ−Ox)]. Remarkably, this compound is the first example of a metallomesogen containing the bridging oxalate group. The bimetallic complexes exhibit different absorption spectra (i.e. colors) depending, in general terms, on the nature of the bridge connecting the two cyclometalated [H(Azo‐6)] moieties, which can be varied so as to tune the optical properties. Blocking the azo group in the trans position results in several cases in weakly luminescent complexes, with luminescence efficiencies ϕ ≈10−4 and luminescence lifetimes of the order of nanoseconds. Using the data obtained from the 4,4′‐bis(hexyloxy)azoxybenzene [H(Azoxy‐6)] derivative, [Azoxy‐6)Pd(µ<?tf="ps2b61">‐Cl)]2, from the mononuclear acetylacetonate (acac) complexes [(Azo‐6)Pd(acac)] and [(Azoxy‐6)Pd(acac)], and from the uncomplexed [H(Azo‐6)] and [H(Azoxy‐6)] ligands, the nature of the excited states relevant to the photophysical behavior are discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
The structures and properties of six new iron(iii) diamine-bis(phenolate) complexes are reported. Reaction of anhydrous FeX(3) salts (where X = Cl or Br) with the diprotonated tripodal tetradentate ligands 2-pyridylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)[L(1)], and N,N-dimethyl-N',N'-bis(2-methylene-4-methyl-6-tert-butylphenol)ethylenediamine, H(2)[L(2)], produces the trigonal bipyramidal iron(iii) complexes, [L(1)]FeCl , [L(1)]FeBr , [L(2)]FeCl and [L(2)]FeBr . Reaction of FeX(3) with the related linear tetradentate ligand N,N'-bis(4,6-tert-butyl-2-methylphenol)-N,N'-bismethyl-1,2-diaminoethane, H(2)[L(3)], generates square pyramidal iron(iii) complexes, [L(3)]FeCl and [L(3)]FeBr . Complexes have been characterized using electronic absorption spectroscopy and magnetometry. Single crystal X-ray molecular structures have been determined for complexes 1, 3, 5 and 6.  相似文献   

12.
Deprotonation of mixtures of the triazene complexes [RhCl(CO)2(p-MeC6H4NNNHC6H4Me-p)] and [PdCl(eta(3)-C3H5)(p-MeC6H4NNNHC6H4Me-p)] or [PdCl2(PPh3)(p-MeC6H4NNNHC6H4Me-p)] with NEt3 gives the structurally characterised heterobinuclear triazenide-bridged species [(OC)2Rh(mu-p-MeC6H4NNNC6H4Me-p)2PdLL'] {LL' = eta(3)-C3H5 1 or Cl(PPh3) 2} which, in the presence of Me3NO, react with [NBu(n)4]I, [NBu(n)4]Br, [PPN]Cl or [NBu(n)4]NCS to give [(OC)XRh(mu-p-MeC6H4NNNC6H4Me-p)2PdCl(PPh3)]- (X = I 3-, Br 4-, Cl 5- or NCS 6-) and [NBu(n)4][(OC)XRh(mu-p-MeC6H4NNNC6H4Me-p)2Pd(eta(3)-C3H5)], (X = I 7- or Br 8-). The allyl complexes 7- and 8- undergo one-electron oxidation to the corresponding unstable neutral complexes 7 and 8 but, in the presence of the appropriate halide, oxidative substitution results in the stable paramagnetic complexes [NBu(n)4][X2Rh(mu-p-MeC6H4NNNC6H4Me-p)2Pd(eta(3)-C3H5)], (X = I 9- or Br 10-). X-Ray structural (9-), DFT and EPR spectroscopic studies are consistent with the unpaired electron of 9- and 10- localised primarily on the Rh(II) centre of the [RhPd]4+ core, which is susceptible to oxygen coordination at low temperature to give Rh(III)-bound superoxide.  相似文献   

13.
The synthesis and the IR, NMR (1H, 13C, and 119Sn), and M?ssbauer spectroscopies and single-crystal X-ray diffraction studies of seven-coordinated diorganotin(IV) complexes, namely, [Ph2Sn(Hdapsc)]Cl.H2O.DMF [7; H(2)dapsc = 2,6-diacetylpyridine bis(semicarbazone)], [Me(2)Sn(H2,6Achexim)]Br.H2O [8; H(2)2,6Achexim = 2,6-diacetylpyridine bis(3-hexamethyleneiminylthiosemicarbazone)], [Me(2)Sn(dapmts)] [9; H(2)dapmts = 2,6-diacetylpyridine bis(4-methythiosemicarbazone)], and [nBu2Sn(dapmdtc)] [10; H(2)dapmdtc = 2,6-diacetylpyridine bis(S-methydithiocarbazate)], were done. The determination of the structures of [Ph(2)Sn(Hdapsc)]+, [Me2Sn(H2,6Achexim)]+ and [Me2Sn(dapmts)], [nBu2Sn(dapmdtc)] revealed the presence of monocationic and neutral complexes, respectively. The structures consist of monomeric units in which the Sn(IV) ions exhibit distorted pentagonal-bipyramidal geometries, with the X,N,N,N,X-donor (X = O, S) systems of the ligands lying in the equatorial plane and the organic groups in the apical positions. The C-Sn-C angle in the seven-coordinated diorganotin(IV) complexes was estimated using a correlation between M?ssbauer and X-ray data based on the point-charge model and using new values obtained in this work for [alkyl] = -1.00 mm s(-1) and [aryl] = -0.80 mm s(-1) for complexes containing O,N,N,N,O-pentadentate ligands and new values for [alkyl] = -0.87 mm s(-1) and [aryl] = -0.75 mm s(-1) for complexes containing S,N,N,N,S-pentadentate ligands.  相似文献   

14.
A series of palladium(II) complexes with 1,2-bis[di(benzo-15-crown-5)phosphino]ethane ligand (dbcpe), [Pd(dbcpe)X2] (X = Cl 1, Br 2 and I 3), have been successfully synthesised and characterised. The X-ray crystal structure of dbcpe has also been determined. The cation-binding properties of the complexes have been studied and the stability constants with alkali metal cations determined. The crown-free analogue of dbcpe, 1,2-bis[bis(3,4-dimethoxyphenyl)phosphino]ethane (ddmppe), and the related complexes have also been prepared and comparison studies have been made.  相似文献   

15.
A series of iron(III) complexes 1-4 of the tripodal tetradentate ligands N,N-bis(pyrid-2-ylmethyl)-N-(2-hydroxyethyl)amine H(L1), N,N-bis(pyrid-2-ylmethyl)-N-(2-hydroxy- propyl)amine H(L2), N,N-bis(pyrid-2-ylmethyl)-N-ethoxyethanolamine H(L3), and N-((pyrid-2-ylmethyl)(1-methylimidazol-2-ylmethyl))-N-(2-hydroxyethyl)amine H(L4), have been isolated, characterized and studied as functional models for intradiol-cleaving catechol dioxygenases. In the X-ray crystal structure of [Fe(L1)Cl(2)] 1, the tertiary amine nitrogen and two pyridine nitrogen atoms of H(L1) are coordinated meridionally to iron(III) and the deprotonated ethanolate oxygen is coordinated axially. In contrast, [Fe(HL3)Cl(3)] 3 contains the tertiary amine nitrogen and two pyridine nitrogen atoms coordinated facially to iron(III) with the ligand ethoxyethanol moiety remaining uncoordinated. The X-ray structure of the bis(μ-alkoxo) dimer [{Fe(L5)Cl}(2)](ClO(4))(2)5, where HL is the tetradentate N(3)O donor ligand N,N-bis(1-methylimidazol-2-ylmethyl)-N-(2-hydroxyethyl)amine H(L5), contains the ethanolate oxygen donors coordinated to iron(III). Interestingly, the [Fe(HL)(DBC)](+) and [Fe(HL3)(HDBC)X] adducts, generated by adding ~1 equivalent of piperidine to solutions containing equimolar quantities of iron(III) complexes 1-5 and H(2)DBC (3,5-di-tert-butylcatechol), display two DBC(2-)→ iron(III) LMCT bands (λ(max): 1, 577, 905; 2, 575,915; 3, 586, 920; 4, 563, 870; 5, 557, 856 nm; Δλ(max), 299-340 nm); however, the bands are blue-shifted (λ(max): 1, 443, 700; 2, 425, 702; 3, 424, 684; 4, 431, 687; 5, 434, 685 nm; Δλ(max), 251-277 nm) on adding 1 more equivalent of piperidine to form the adducts [Fe(L)(DBC)] and [Fe(HL3)(HDBC)X]. Electronic spectral and pH-metric titration studies in methanol disclose that the ligand in [Fe(HL)(DBC)](+) is protonated. The [Fe(L)(DBC)] adducts of iron(III) complexes of bis(pyridyl)-based ligands (1,2) afford higher amounts of intradiol-cleavage products, whereas those of mono/bis(imidazole)-based ligands (4,5) yield mainly the auto-oxidation product benzoquinone. It is remarkable that the adducts [Fe(HL)(DBC)](+)/[Fe(HL3)(DBC)X] exhibit higher rates of oxygenation affording larger amounts of intradiol-cleavage products and lower amounts of benzoquinone.  相似文献   

16.
Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh]]. Similarly, the reaction of [Pd(bipy)(C(6)F(5))(OH)] with PhNCO in methanol gives the N-phenyl-O-methylcarbamate complex [Pd(bipy)(C(6)F(5))[NPhC(O)OR]]. The reactions of [(N[bond]N)Pd(C(6)F(5))(OH)] with PhNCS in the presence of Et(2)NH yield the corresponding thioureidometal complexes [Pd(N[bond]N)(C(6)F(5))[NPhCSNR(2)]]. The crystal structures of [Pd(tmeda)(C(6)F(5))(CO(2)Me)], [Pd(2)(Me(2)bipy)(2)(C(6)F(5))(2)(mu-eta(2)-CO(3))].2CH(2)Cl(2), and [Pd(tmeda)(C(6)F(5))[SC(OMe)NPh]] have been determined.  相似文献   

17.
The synthesis, spectroscopic and X-ray structural characterization of copper(II) and palladium(II) complexes with aziridine ligands as 2-dimethylaziridine HNCH(2)CMe(2) (a), the bidentate N-(2-aminoethyl)aziridines C(2)H(4)NC(2)H(4)NH(2) (b) or CH(2)CMe(2)NCH(2)CMe(2)NH(2) (c) as well as the unsaturated azirine NCH(2)CPh (d) are reported. Cleavage of the cyclometallated Pd(II) dimer [μ-Cl(C(6)H(4)CHMeNMe(2)-C,N)Pd](2) with ligand a yielded compound [Cl(NHCH(2)CMe(2))(C(6)H(4)CHMe(2)NMe(2)-C,N)Pd] (1a). The reaction of the aziridine complex trans-[Cl(2)Pd(HNC(2)H(4))(2)] with an excess of aziridine in the presence of AgOTf gave the ionic chelate complex trans-[(C(2)H(4)NC(2)H(4)NH(2)-N,N')(2)Pd](OTf)(2) (2b) which contains the new ligand b formed by an unexpected insertion and ring opening reaction of two aziridines ("aziridine dimerization"). CuCl(2) reacted in pure HNC(2)H(4) or HNCH(2)CMe(2) (b) again by "dimerization" to give the tris-chelated ionic complex [Cu(C(2)H(4)NC(2)H(4)NH(2)-N,N')(3)]Cl(2) (3b) or the bis-chelated complex [CuCl(C(2)H(2)Me(2)NC(2)H(2)Me(2)NH(2)-N,N')(2)]Cl (4c). By addition of 2H-3-phenylazirine (d) to PdCl(2), trans-[Cl(2)Pd(NCH(2)CPh)(2)] (5d) was formed. All new compounds were characterized by NMR, IR and mass spectra and also by X-ray structure analyses (except 3b). Additionally the cytotoxic effects of these complexes were examined on HL-60 and NALM-6 human leukemia cells and melanoma WM-115 cells. The antimicrobial activity was also determined. The growth of Gram-positive bacterial strains (S. aureus, S. epidermidis, E. faecalis) was inhibited by almost all tested complexes at the concentrations of 37.5-300.0 μg mL(-1). However, MIC values of complexes obtained for Gram-negative E. coli and P. aeruginosa, as well as for C. albicans yeast, mostly exceeded 300 μg mL(-1). The highest antibacterial activity was achieved by complexes 1a and 2b. Complex 2b also inhibited the growth of Gram-negative bacteria.  相似文献   

18.
Redox addition of the Pd-Pd bond in [Pd(2)Cl(2)(dppm)(2)] across S-S or Se-Se bond in [Pt(X(4)-kappa(2)X(1),X(4))(P-P)] (X = S, Se; P-P = dppe or 2 x PPh(3); dppm = bis(diphenylphosphino)methane, dppe = bis(diphenylphosphino)ethane) leads to the isolation of [PtPd(2)(mu(3)-X)(2)(P-P)(dppmX-kappa(2)X,P(4))(2)](2+) and represents an atom-economy process that converts chalcogen-rich complexes to heterometallic chalcogenide aggregates. Activation of the [PtX(4)] ring is achieved by tetrachalcogenide reduction and dual oxidation of palladium and phosphine.  相似文献   

19.
Planar nickel(II) complexes involving N‐(2‐Hydroxyethyl)‐N‐methyldithiocarbamate, such as [NiX(nmedtc)(PPh3)] (X = Cl, NCS; PPh3 = triphenylphosphine), and [Ni(nmedtc)(P‐P)]ClO4(P‐P = 1,1‐bis(diphenylphosphino)methane(dppm); 1,3‐bis(diphenylphosphino)propane (1,3‐dppp); 1,4‐bis(diphenylphosphino)butane(1,4‐dppb) have been synthesized. The complexes have been characterized by elemental analyses, IR and electronic spectroscopies. The increased νC–N value in all the complexes is due to the mesomeric drift of electrons from the dithiocarbamate ligands to the metal atom. Single crystal X‐ray structure of [Ni(nmedtc)(1,3‐dppp)]ClO4·H2O is reported. In the present 1,3‐dppp chelate, the P–Ni–P angle is higher than that found in 1,2‐bis(diphenylphosphino)ethane‐nickel chelates and lower than 1,4‐bis(diphenylphosphino)butane‐nickel chelates, as a result of presence of the flexible propyl back bone connecting the two phosphorus atoms of the complex.  相似文献   

20.
Multinuclear 3d-4f complexes with sandwichlike molecular structures are formed with the Schiff-base ligand bis(3-methoxysalicylidene)ethylene-1,2-phenylenediamine(H(2)L). The stoichiometry and structures are dependent on the Zn:Nd ratio and counteranions present. They are trinuclear [Nd(ZnL)2(NO3)2(H2O)2].NO3.EtOH.H2O (1), [Nd(ZnL)2Cl2(H2O)3].Cl.2MeOH.5H2O (2), and tetranuclear [Nd2(ZnL)2Cl6(MeOH)2].MeOH (3). Dinuclear complex [NdZnL(NO3)3MeCN].MeCN (4) was also characterized. Near-infrared (NIR) lanthanide luminescence is observed in these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号