首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of 9,10-phenanthrenequinone (PQ) with [M(II)(H)(CO)(X)(PPh(3))(3)] in boiling toluene leads to the homolytic cleavage of the M(II)-H bond, affording the paramagnetic trans-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 1; M = Os, X = Br, 3) and cis-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 2; M = Os, X = Br, 4) complexes. Single-crystal X-ray structure determinations of 1, 2·toluene, and 4·CH(2)Cl(2), EPR spectra, and density functional theory (DFT) calculations have substantiated that 1-4 are 9,10-phenanthrenesemiquinone radical (PQ(?-)) complexes of ruthenium(II) and osmium(II) and are defined as trans-[Ru(II)(PQ(?-))(PPh(3))(2)(CO)Cl] (1), cis-[Ru(II)(PQ(?-))(PPh(3))(2)(CO)Cl] (2), trans-[Os(II)(PQ(?-))(PPh(3))(2)(CO) Br] (3), and cis-[Os(II)(PQ(?-))(PPh(3))(2)(CO)Br] (4). Two comparatively longer C-O [average lengths: 1, 1.291(3) ?; 2·toluene, 1.281(5) ?; 4·CH(2)Cl(2), 1.300(8) ?] and shorter C-C lengths [1, 1.418(5) ?; 2·toluene, 1.439(6) ?; 4·CH(2)Cl(2), 1.434(9) ?] of the OO chelates are consistent with the presence of a reduced PQ(?-) ligand in 1-4. A minor contribution of the alternate resonance form, trans- or cis-[M(I)(PQ)(PPh(3))(2)(CO)X], of 1-4 has been predicted by the anisotropic X- and Q-band electron paramagnetic resonance spectra of the frozen glasses of the complexes at 25 K and unrestricted DFT calculations on 1, trans-[Ru(PQ)(PMe(3))(2)(CO)Cl] (5), cis-[Ru(PQ)(PMe(3))(2)(CO)Cl] (6), and cis-[Os(PQ)(PMe(3))(2)(CO)Br] (7). However, no thermodynamic equilibria between [M(II)(PQ(?-))(PPh(3))(2)(CO)X] and [M(I)(PQ)(PPh(3))(2)(CO)X] tautomers have been detected. 1-4 undergo one-electron oxidation at -0.06, -0.05, 0.03, and -0.03 V versus a ferrocenium/ferrocene, Fc(+)/Fc, couple because of the formation of PQ complexes as trans-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (1(+)), cis-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (2(+)), trans-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (3(+)), and cis-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (4(+)). The trans isomers 1 and 3 also undergo one-electron reduction at -1.11 and -0.96 V, forming PQ(2-) complexes trans-[Ru(II)(PQ(2-))(PPh(3))(2)(CO)Cl](-) (1(-)) and trans-[Os(II)(PQ(2-))(PPh(3))(2)(CO)Br](-) (3(-)). Oxidation of 1 by I(2) affords diamagnetic 1(+)I(3)(-) in low yields. Bond parameters of 1(+)I(3)(-) [C-O, 1.256(3) and 1.258(3) ?; C-C, 1.482(3) ?] are consistent with ligand oxidation, yielding a coordinated PQ ligand. Origins of UV-vis/near-IR absorption features of 1-4 and the electrogenerated species have been investigated by spectroelectrochemical measurements and time-dependent DFT calculations on 5, 6, 5(+), and 5(-).  相似文献   

2.
The pincer complexes [MX(CNN)(PP)] (M = Ru, Os; X = Cl, OTf; HCNN = 1-(6-arylpyridin-2-yl)methanamine; PP = diphosphine) have proven to efficiently catalyze both racemization and deuteration of alcohols in the presence of a base. Chiral alcohols have been racemized at 30-50 °C using 1 mol% of Ru or Os pincer complexes and 5 mol% of KOtBu in 2-propanol. Primary and secondary alcohols are efficiently deuterated at the α position, with respect to the OH group, using 2-propanol-d(8) as solvent with Ru or Os pincer complexes and KOtBu at 30-50 °C. For secondary alcohols incorporation of deuterium at the β position has also been observed. In 2-propanol-d(8) the pincer complexes catalyze the simultaneous deuteration and racemization of (S)-1-phenylethanol, the two processes being strictly correlated. For both reactions much the same activity has been observed with the Ru and Os complexes. The pincer complexes display a superior activity with respect to the related compounds [MCl(2)(NN)(PP)] (NN = bidentate amine or pyridine ligand). The synthesis of the new complexes [MCl(CNN)(PP)] (M = Ru, 2, 4 and Os, 6, 7; PP = dppb, dppf) and [Ru(OTf)(CNN)(dppb)] (3) is also reported.  相似文献   

3.
The trinuclear complexes [M3(mu-Cl)(mu-S approximately CH)(CO)9] (M=Ru, Os; S approximately CH=1-ethylenethiolate-3-H-4-(S)-phenylimidazolin-2-ylidene) and [M3(mu-H)(mu-S approximately CMe)(CO)9] (M=Ru, Os; S approximately CMe=1-ethylenethiolate-3-methyl-4-(S)-phenylimidazolin-2-ylidene) have been prepared by treating [Ru3(CO)12] and [Os3(CO)10(MeCN)2] with levamisolium chloride or [M3(mu-H)(CO)11]- with methyl levamisolium triflate, respectively. The chiral N-heterocyclic carbene-thiolate ligands S approximately CH and S approximately CMe arise from the oxidative addition of the C-S bond of levamisolium or methyl levamisolium cations to anionic trinuclear clusters.  相似文献   

4.
The influences of R, the alpha-diimine, and the transition metal M on the excited-state properties of the complexes [M(SnR3)2(CO)2(alpha-diimine)] (M = Ru, Os; R = Ph, Me) have been investigated. Various synthetic routes were used to prepare the complexes, which all possess an intense sigma-bond-to-ligand charge-transfer transition in the visible region between a sigma(Sn-M-Sn) and a pi*(alpha-diimine) orbital. The resonance Raman spectra show that many bonds are only weakly affected by this transition. The room-temperature time-resolved absorption spectra of [M(SnR3)2(CO)2(dmb)] (M = Ru, Os; R = Me, Ph; dmb = 4,4'-dimethyl-2,2'-bipyridine) show the absorptions of the radical anion of dmb, in line with the SBLCT character of the lowest excited state. The excited-state lifetimes at room temperature vary between 0.5 and 3.6 microseconds and are mainly determined by the photolability of the complexes. All complexes are photostable in a glass at 80 K, under which conditions they emit with very long lifetimes. The extremely long emission lifetimes (e.g., tau = 1.1 ms for [Ru(SnPh3)2(CO)2(dmb)]) are about a thousand times longer than those of the 3MLCT states of the [Ru(Cl)(Me)(CO)2(alpha-diimine)] complexes. This is due to the weak distortion of the former complexes in their 3SBLCT states as seen from the very small Stokes shifts. Remarkably, replacement of Ru by Os hardly influences the absorption and emission energies of these complexes; yet the emission lifetime is shortened because of an increase of spin-orbit coupling. The quantum yield of emission at 80 K is 1-5% for these complexes, which is lower than might be expected on the basis of their slow nonradiative decay.  相似文献   

5.
The reaction of [Ru(3)(CO)(12)] with Ph(3)SnSPh in refluxing benzene furnished the bimetallic Ru-Sn compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-SnPh(2))(SnPh(3))(2)] which consists of a SnPh(2) stannylene bonded to three Ru atoms to give a planar tetra-metal core, with two peripheral SnPh(3) ligands. The stannylene ligand forms a very short bond to one Ru atom [Sn-Ru 2.538(1) A] and very long bonds to the other two [Sn-Ru 3.074(1) A]. The germanium compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-GePh(2))(GePh(3))(2)] was obtained from the reaction of [Ru(3)(CO)(12)] with Ph(3)GeSPh and has a similar structure to that of as evidenced by spectroscopic data. Treatment of [Os(3)(CO)(10)(MeCN)(2)] with Ph(3)SnSPh in refluxing benzene yielded the bimetallic Os-Sn compound [Os(3)(CO)(9)(mu-SPh)(mu(3)-SnPh(2))(MeCN)(eta(1)-C(6)H(5))] . Cluster has a superficially similar planar metal core, but with a different bonding mode with respect to that of . The Ph(2)Sn group is bonded most closely to Os(2) and Os(3) [2.786 and 2.748 A respectively] with a significantly longer bond to Os(1), 2.998 A indicating a weak back-donation to the Sn. The reaction of the bridging dppm compound [Ru(3)(CO)(10)(mu-dppm)] with Ph(3)SnSPh afforded [Ru(3)(CO)(6)(mu-dppm)(mu(3)-S)(mu(3)-SPh)(SnPh(3))] . Compound contains an open triangle of Ru atoms simultaneously capped by a sulfido and a PhS ligand on opposite sides of the cluster with a dppm ligand bridging one of the Ru-Ru edges and a Ph(3)Sn group occupying an axial position on the Ru atom not bridged by the dppm ligand.  相似文献   

6.
Inventing new wheels: reaction of [M(3)(CO)(12) ] (M=Ru, Os) with 4-RC(6)H(4)SH afforded [{M(S-4-RC(6)H(4))(2)(CO)(2)}(8)] (R=H; I) or [{M(S-4-RC(6)H(4))(2)(CO)(2)}(6)] (R=Me, iPr; II; see scheme), all of which have been structurally characterized. The octamers I are unique metal molecular wheels featuring skew-edge-shared octahedra with a central planar M(8) octagon. [{Ru(S-4-iPrC(6)H(4))(2)(CO)(2)}(6)] selectively binds a Cu(+) or Ag(+) ion to form [M'{Ru(S(4-iPr-C(6)H(4)))(2)(CO)(2)}(6)](+) (III).  相似文献   

7.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

8.
The kinetics of electron transfer for the reactions cis-[Ru(IV)(bpy)2(py)(O)]2+ + H+ + [Os(II)(bpy)3]2+ <==> cis-[Ru(III)(bpy)2(py)(OH)]2+ + [Os(III)(bpy)3]3+ and cis-[Ru(III)(bpy)2(py)(OH)]2+ + H+ + [Os(II)(bpy)3]2+ <==> cis-[Ru(II)(bpy)2(py)(H2O)]2+ + [Os(III)(bpy)3]3+ have been studied in both directions by varying the pH from 1 to 8. The kinetics are complex but can be fit to a double "square scheme" involving stepwise electron and proton transfer by including the disproportionation equilibrium, 2cis-[Ru(III)(bpy)2(py)(OH)]2+ <==> (3 x 10(3) M(-1) x s(-1) forward, 2.1 x 10(5) M(-1) x s(-1) reverse) cis-[Ru(IV)(bpy)2(py)(O)]2+ + cis-[Ru(II)(bpy)2(py)(H2O)]2+. Electron transfer is outer-sphere and uncoupled from proton transfer. The kinetic study has revealed (1) pH-dependent reactions where the pH dependence arises from the distribution between acid and base forms and not from variations in the driving force; (2) competing pathways involving initial electron transfer or initial proton transfer whose relative importance depends on pH; (3) a significant inhibition to outer-sphere electron transfer for the Ru(IV)=O2+/Ru(III)-OH2+ couple because of the large difference in pK(a) values between Ru(IV)=OH3+ (pK(a) < 0) and Ru(III)-OH2+ (pK(a) > 14); and (4) regions where proton loss from cis-[Ru(II)(bpy)2(py)(H2O)]2+ or cis-[Ru(III)(bpy)2(py)(OH)]2+ is rate limiting. The difference in pK(a) values favors more complex pathways such as proton-coupled electron transfer.  相似文献   

9.
A wide variety of ruthenium porphyrin carbene complexes, including [Ru(tpfpp)(CR(1)R(2))] (CR(1)R(2) = C(p-C(6)H(4)Cl)(2) 1 b, C(p-C(6)H(4)Me)(2) 1 c, C(p-C(6)H(4)OMe)(2) 1 d, C(CO(2)Me)(2) 1 e, C(p-C(6)H(4)NO(2))CO(2)Me 1 f, C(p-C(6)H(4)OMe)CO(2)Me 1 g, C(CH==CHPh)CO(2)CH(2)(CH==CH)(2)CH(3) 1 h), [Ru(por)(CPh(2))] (por=tdcpp 2 a, 4-Br-tpp 2 b, 4-Cl-tpp 2 c, 4-F-tpp 2 d, tpp 2 e, ttp 2 f, 4-MeO-tpp 2 g, tmp 2 h, 3,4,5-MeO-tpp 2 i), [Ru(por)[C(Ph)CO(2)Et]] (por=tdcpp 2 j, tmp 2 k), [Ru(tpfpp)(CPh(2))(L)] (L = MeOH 3 a, EtSH 3 b, Et(2)S 3 c, MeIm 3 d, OPPh(3) 3 e, py 3 f), and [Ru(tpfpp)[C(Ph)CO(2)R](MeOH)] (R = CH(2)CH==CH(2) 4 a, Me 4 b, Et 4 c), were prepared from the reactions of [Ru(por)(CO)] with diazo compounds N(2)CR(1)R(2) in dichloromethane and, for 3 and 4, by further treatment with reagents L. A similar reaction of [Os(tpfpp)(CO)] with N(2)CPh(2) in dichloromethane followed by treatment with MeIm gave [Os(tpfpp)(CPh(2))(MeIm)] (3 d-Os). All these complexes were characterized by (1)H NMR, (13)C NMR, and UV/Vis spectroscopy, mass spectrometry, and elemental analyses. X-ray crystal structure determinations of 1 d, 2 a,i, 3 a, b, d, e, 4 a-c, and 3 d-Os revealed Ru==C distances of 1.806(3)-1.876(3) A and an Os==C distance of 1.902(3) A. The structure of 1 d in the solid state features a unique "bridging" carbene ligand, which results in the formation of a one-dimensional coordination polymer. Cyclic voltammograms of 1 a-c, g, 2 a-d, g-k, 3 b-d, 4 a, b, and 3 d-Os show a reversible oxidation couple with E(1/2) values in the range of 0.06-0.65 V (vs Cp(2)Fe(+/0)) that is attributable to a metal-centered oxidation. The influence of carbene substituents, porphyrin substituents, and trans-ligands on the Ru==C bond was examined through comparison of the chemical shifts of the pyrrolic protons in the porphyrin macrocycles ((1)H NMR) and the M==C carbon atoms ((13)C NMR), the potentials of the metal-centered oxidation couples, and the Ru==C distances among the various ruthenium porphyrin carbene complexes. A direct comparison among iron, ruthenium, and osmium porphyrin carbene complexes is made.  相似文献   

10.
[Ru(II)(por)(PH(n)Ph(3-n))2], [Os(II)(por)(CO)(PH(n)Ph(3-n))] (n=1, 2), and [Os(II)(F20-tpp){P(OH)Ph2}(PHPh2)] (F20-tpp=5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato dianion) were prepared from the reaction of [M(II)(por)(CO)] (M=Ru, Os) or [Os(VI)(por)O2] with the respective primary/secondary phosphane and characterized by 1H NMR, 31P NMR, UV/Vis, and IR spectroscopy, mass spectrometry, and elemental analysis. The reaction of [Os(VI)(por)O2] with PHPh2 also gave minor amounts of [Os(II)(por){P(OH)Ph2}2]. [Ru(II)(F20-tpp)(PH2Ph)2] exhibits a remarkable stability toward air and shows a reversible metal-centered oxidation couple at E(1/2)=0.39 V versus [Cp2Fe](+/0) in the cyclic voltammogram. The structures of [Ru(II)(F20-tpp)(PH2Ph)2] x 2CH2Cl2, [Ru(II)(4-Cl-tpp)(PHPh2)2] x 2CH2Cl2 (4-Cl-tpp=5,10,15,20-tetrakis(p-chlorophenyl)porphyrinato dianion), [Ru(II)(F20-tpp)(PHPh2)2], and [Os(II)(F20-tpp){P(OH)Ph2}2] were determined by X-ray crystallography and feature Ru-P distances of 2.3397(11)-2.3609(9) A and an Os-P distance of 2.369(2) A.  相似文献   

11.
The complexes [Ru((t)Bu(2)bipy)(bpym)X(2)] (X = Cl, NCS) and [M((t)Bu(2)bipy)(2)(bpym)][PF(6)](2) (M = Ru, Os) all have a low-energy LUMO arising from the presence of a 2,2'-bipyrimidine ligand, and consequently have lower-energy (1)MLCT and (3)MLCT states than analogous complexes of bipyridine. The vacant site of the bpym ligand provides a site at which [Ln(diketonate)(3)] units can bind to afford bipyrimidine-bridged dinuclear Ru-Ln and Os-Ln dyads; four such complexes have been structurally characterised. UV/Vis and luminescence spectroscopic studies show that binding of the Ln(III) fragment at the second site of the bpym ligand reduces the (3)MLCT energy of the Ru or Os fragment still further. The result is that in the dyads [Ru((t)Bu(2)bipy)X(2)(mu-bpym)Ln(diketonate)(3)] (X = Cl, NCS) and [Os((t)Bu(2)bipy)(2)(mu-bpym)Ln(diketonate)(3)][PF(6)](2) the (3)MLCT is too low to sensitise the luminescent f-f states of Nd(III) and Yb(III), but in [Ru((t)Bu(2)bipy)(2)(mu-bpym)Ln(diketonate)(3)][PF(6)](2) the (3)MLCT energy of 13,500 cm(-1) permits energy transfer to Yb(III) and Nd(III) resulting in sensitised near-infrared luminescence on the microsecond timescale.  相似文献   

12.
Reactions of [M(SR)(3)(PMe(2)Ph)(2)] (M = Ru, Os; R = C(6)F(4)H-4, C(6)F(5)) with CS(2) in acetone afford [Ru(S(2)CSR)(2)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 1; C(6)F(5), 3) and trans-thiolates [Ru(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 2; C(6)F(5), 4) or the isomers trans-thiolates [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 5; C(6)F(5), 7) and trans-thiolate-phosphine [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 6; C(6)F(5), 8) through processes involving CS(2) insertion into M-SR bonds. The ruthenium(III) complexes [Ru(SR)(3)(PMe(2)Ph)(2)] react with CS(2) to give the diamagnetic thiolate-thioxanthato ruthenium(II) and the paramagnetic ruthenium(III) complexes while osmium(III) complexes [Os(SR)(3)(PMe(2)Ph)(2)] react to give the paramagnetic thiolate-thioxanthato osmium(III) isomers. The single-crystal X-ray diffraction studies of 1, 4, 5, and 8 show distorted octahedral structures. (31)P [(1)H] and (19)F NMR studies show that the solution structures of 1 and 3 are consistent with the solid-state structure of 1.  相似文献   

13.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

14.
The complexes [(H3N)5Ru(II)(mu-NC)Mn(I)Lx]2+, prepared from [Ru(OH2)(NH3)5]2+ and [Mn(CN)L(x)] {L(x) = trans-(CO)2{P(OPh)3}(dppm); cis-(CO)2(PR3)(dppm), R = OEt or OPh; (PR3)(NO)(eta-C5H4Me), R = Ph or OPh}, undergo two sequential one-electron oxidations, the first at the ruthenium centre to give [(H3N)5Ru(III)(mu-NC)Mn(I)Lx]3+; the osmium(III) analogues [(H3N)5Os(III)(mu-NC)Mn(I)Lx]3+ were prepared directly from [Os(NH3)5(O3SCF3)]2+ and [Mn(CN)Lx]. Cyclic voltammetry and electronic spectroscopy show that the strong solvatochromism of the trications depends on the hydrogen-bond accepting properties of the solvent. Extensive hydrogen bonding is also observed in the crystal structures of [(H3N)5Ru(III)(mu-NC)Mn(I)(PPh3)(NO)(eta-C5H4Me)][PF6]3.2Me2CO.1.5Et2O, [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)(dppm)2-trans][PF6]3.5Me2CO and [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)2{P(OEt)3}(dppm)-trans][PF6]3.4Me2CO, between the amine groups (the H-bond donors) at the Ru(III) site and the oxygen atoms of solvent molecules or the fluorine atoms of the [PF6]- counterions (the H-bond acceptors).  相似文献   

15.
New benzo[h]quinoline ligands (HCN'N) containing a CHRNH2 (R=H (a), Me (b), tBu (c)) function in the 2-position were prepared starting from benzo[h]quinoline N-oxide (in the case of ligand a) and 2-chlorobenzo[h]quinoline (for ligands b and c). These compounds were used to prepare ruthenium and osmium complexes, which are excellent catalysts for the transfer hydrogenation (TH) of ketones. The reaction of a with [RuCl2(PPh3)3] in 2-propanol at reflux afforded the terdentate CN'N complex [RuCl(CN'N)(PPh3)2] (1), whereas the complexes [RuCl(CN'N)(dppb)] (2-4; dppb=Ph2P(CH2)4PPh2) were obtained from [RuCl2(PPh3)(dppb)] with a-c, respectively. Employment of (R,S)-Josiphos, (S,R)-Josiphos*, (S,S)-Skewphos, and (S)-MeO-Biphep in combination with [RuCl2(PPh3)3] and ligand a gave the chiral derivatives [RuCl(CN'N)(PP)] (5-8). The osmium complex [OsCl(CN'N)(dppb)] (12) was prepared by treatment of [OsCl2(PPh3)3] with dppb and ligand a. Reaction of the chloride 2 and 12 with NaOiPr in 2-propanol/toluene afforded the hydride complexes [MH(CN'N)(dppb)] (M=Ru 10, Os 14), through elimination of acetone from [M(OiPr)(CN'N)(dppb)] (M=Ru 9, Os 13). The species 9 and 13 easily reacted with 4,4'-difluorobenzophenone, via 10 and 14, respectively, affording the corresponding isolable alkoxides [M(OR)(CN'N)(dppb)] (M=Ru 11, Os 15). The complexes [MX(CN'N)(P2)] (1-15) (M=Ru, Os; X=Cl, H, OR; P=PPh3 and P2=diphosphane) are efficient catalysts for the TH of carbonyl compounds with 2-propanol in the presence of NaOiPr (2 mol %). Turnover frequency (TOF) values up to 1.8x10(6) h(-1) have been achieved using 0.02-0.001 mol % of catalyst. Much the same activity has been observed for the Ru--Cl, --H, --OR, and the Os--Cl derivatives, whereas the Os--H and Os--OR derivatives display significantly lower activity on account of their high oxygen sensitivity. The chiral Ru complexes 5-8 catalyze the asymmetric TH of methyl-aryl ketones with TOF approximately 10(5) h(-1) at 60 degrees C, up to 97 % enatiomeric excess (ee) and remarkably high productivity (0.005 mol % catalyst loading). High catalytic activity (TOF up to 2.2x10(5) h(-1)) and enantioselectivity (up to 98 % ee) have also been achieved with the in-situ-generated catalysts prepared from [MCl2(PPh3)3], (S,R)-Josiphos or (S,R)-Josiphos*, and the benzo[h]quinoline ligands a-c.  相似文献   

16.
Reaction of Ru3(CO)12, with 2-(2'-pyridyl)benzimidazole (HPBI) resulted in the formation of Ru(CO)3(HPBI) (I) complex. In presence of pyridine or dipyridine, the two derivatives [Ru(CO)3(HPBI)].Py (II) and [Ru(CO)3(HPBI)].dpy (III) were isolated. The corresponding reactions of Os3(CO)12 yielded only one single product; Os(CO)2(HPBI)2 (IV). Spectroscopic studies of these complexes revealed intramolecular metal to ligand CT interactions. Reactions of RuCl3 with HPBI gave three distinct products; [Ru(HPBI)2Cl2]Cl (V), [Ru(HPBI)(dipy)Cl2]C1 (VI) and [Ru(PBI)2(py)2]Cl (VII). The UV-vis studies indicated the presence of intramolecular ligand to metal CT interactions. Electrochemical investigation of the complexes showed some irreversible, reversible and quasi-reversible redox reactions due to tautomeric interconversions through electron transfer.  相似文献   

17.
A series of vinyl, aryl, acetylide and silyl complexes [Ru(R)(kappa2-MI)(CO)(PPh3)2] (R = CH=CH2, CH=CHPh, CH=CHC6H4CH3-4, CH=CH(t)Bu, CH=2OH, C(C triple bond CPh)=CHPh, C6H5, C triple bond CPh, SiMe2OEt; MI = 1-methylimidazole-2-thiolate) were prepared from either [Ru(R)Cl(CO)(PPh3)2] or [Ru(R)Cl(CO)(BTD)(PPh3)2](BTD = 2,1,3-benzothiadiazole) by reaction with the nitrogen-sulfur mixed-donor ligand, 1-methyl-2-mercaptoimidazole (HMI), in the presence of base. In the same manner, [Os(CH=CHPh)(kappa2-MI)(CO)(PPh3)2] was prepared from [Os(CH=CHPh)(CO)Cl(BTD)(PPh3)2]. The in situ hydroruthenation of 1-ethynylcyclohexan-1-ol by [RuH(CO)Cl(BTD)(PPh3)2] and subsequent addition of the HMI ligand and excess sodium methoxide yielded the dehydrated 1,3-dienyl complex [Ru(CH=CHC6H9)(kappa2-MI)(CO)(PPh3)2]. Dehydration of the complex [Ru(CH=CHCPh2OH)(kappa2-MI)(CO)(PPh3)2] with HBF4 yielded the vinyl carbene [Ru(=CHCH=CPh2)(kappa2-MI)(CO)(PPh3)2]BF4. The hydride complexes [MH(kappa2-MI)(CO)(PPh3)2](M = Ru, Os) were obtained from the reaction of HMI and KOH with [RuHCl(CO)(PPh3)3] and [OsHCl(CO)(BTD)(PPh3)2], respectively. Reaction of [Ru(CH=CHC6H4CH3-4)(kappa2-MI)(CO)(PPh3)2] with excess HC triple bond CPh leads to isolation of the acetylide complex [Ru(C triple bond CPh)(kappa2-MI)(CO)(PPh3)2], which is also accessible by direct reaction of [Ru(C triple bond CPh)Cl(CO)(BTD)(PPh3)2] with 1-methyl-2-mercaptoimidazole and NaOMe. The thiocarbonyl complex [Ru(CPh = CHPh)Cl(CS)(PPh3)2] reacted with HMI and NaOMe without migration to yield [Ru(CPh= CHPh)(kappa2-MI)(CS)(PPh3)2], while treatment of [Ru(CH=CHPh)Cl(CO)2(PPh3)2] with HMI yielded the monodentate acyl product [Ru{eta(1)-C(=O)CH=CHPh}(kappa2-MI)(CO)(PPh3)2]. The single-crystal X-ray structures of five complexes bearing vinyl, aryl, acetylide and dienyl functionality are reported.  相似文献   

18.
Reaction of 2-(arylazo)phenols (H(2)ap-R; R = OCH(3), CH(3), H, Cl, and NO(2)) with [Os(PPh(3))(2)(CO)(2)(HCOO)(2)] affords a family of organometallic complexes of osmium(II) of type [Os(PPh(3))(2)(CO)(ap-R)] where the 2-(arylazo)phenolate ligand is coordinated to the metal center as a tridentate C,N,O-donor. Structure of the [Os(PPh(3))(2)(CO)(ap-H)] complex has been determined by X-ray crystallography. All the [Os(PPh(3))(2)(CO)(ap-R)] complexes are diamagnetic and show characteristic (1)H NMR signals and intense MLCT transitions in the visible region. They also show emission in the visible region at ambient temperature. Cyclic voltammetry on the [Os(PPh(3))(2)(CO)(ap-R)] complexes shows a reversible Os(II)-Os(III) oxidation within 0.39-0.73 V vs SCE, followed by a reversible Os(III)-Os(IV) oxidation within 1.06-1.61 V vs SCE. Coulometric oxidation of the [Os(PPh(3))(2)(CO)(ap-R)] complexes generates the [Os(III)(PPh(3))(2)(CO)(ap-R)](+) complexes, which have been isolated as the hexafluorophosphate salts. The [Os(III)(PPh(3))(2)(CO)(ap-R)]PF(6) complexes are one-electron paramagnetic and show axial ESR spectra. In solution they behave as 1:1 electrolytes and show intense LMCT transitions in the visible region. The [Os(III)(PPh(3))(2)(CO)(ap-R)]PF(6) complexes have been observed to serve as mild one-electron oxidants in a nonaqueous medium.  相似文献   

19.
Recently, the sigma-aromaticity model proposed for cyclopropane by Dewar was employed to account for the stability of Group 8 trinuclear metal-carbonyl compounds [M(3)(CO)(12)] (M=Fe, Ru, Os). This paper further examines this hypothesis and provides the first quantitative evidence for the sigma-aromatic/antiaromatic nature of the [M(3)(CO)(12)]/[M(4)(CO)(16)] species based on structural and nucleus-independent chemical-shift analysis. In addition, the extent of electron delocalization in tetrahedral [M(4)(CO)(14)] and butterfly [M(4)(CO)(15)] is analyzed and compared to prototype cycloalkanes. While remarkable analogies exist between metal-carbonyls and cycloalkanes, transition metals provide additional overlap possibilities that affect both the ring strain and the magnetic properties of metal-carbonyl rings and cages.  相似文献   

20.
A novel synthesis method is introduced for the preparation of [Os(NN)(CO)(2)X(2)] complexes (X = Cl, Br, I, and NN = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmbpy)). In the first step of this two-step synthesis, OsCl(3) is reduced in the presence of a sacrificial metal surface in an alcohol solution. The reduction reaction produces a mixture of trinuclear mixed metal complexes, which after the addition of bpy or dmbpy produce a trans(Cl)-[Os(NN)(CO)(2)Cl(2)] complex with a good 60-70% yield. The halide exchange of [Os(bpy)(CO)(2)Cl(2)] has been performed in a concentrated halidic acid (HI or HBr) solution in an autoclave, producing 30-50% of the corresponding complex. All of the synthesized trans(X)-[Os(bpy)(CO)(2)X(2)] (X = Cl, Br, I) complexes displayed a similar basic electrochemical behavior to that found in the ruthenium analog trans(Cl)-[Ru(bpy)(CO)(2)Cl(2)] studied previously, including the formation of an electroactive polymer [Os(bpy)(CO)(2)](n) during the two-electron electrochemical reduction. The absorption and emission properties of the osmium complexes were also studied. Compared to the ruthenium analogues, these osmium complexes display pronounced photoluminescence properties. The DFT calculations were made in order to determine the HOMO-LUMO gaps and to analyze the contribution of the individual osmium d-orbitals and halogen p-orbitals to the frontier orbitals of the molecules. The electrochemical and photochemical induced substitution reactions of carbonyl with the solvent molecule are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号