首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One-dimensional ‘steady-shock’ models based on a rate-independent, rigid, perfectly-plastic, locking (r-p-p-l) idealisation of the quasi-static stress-strain curves for aluminium foams are proposed for two different impact scenarios to provide a first-order understanding of the dynamic compaction process. A thermo-mechanical approach is used in the formulation of their governing equations. Predictions by the models are compared with experimental data presented in the companion paper (Part I) and with the results of finite-element simulations of two-dimensional Voronoi honeycombs.A kinematic existence condition for continuing ‘shock’ propagation in aluminium foams is established using thermodynamics arguments and its predictions compare well with the experimental data. The thermodynamics highlight the incorrect application of the global energy balance approach to describe ‘shock’ propagation in cellular solids which appears in some current literature.  相似文献   

2.
Andrea Donato 《Wave Motion》1979,1(4):279-285
We study the propagation of second order weak discontinuities in quasi-linear hyperbolic systems of equations with discontinuous coefficients. The general theory is applied to shallow water waves.  相似文献   

3.
In this paper, we investigate bounded traveling waves of the generalized nonlinear Klein–Gordon model equations by using bifurcation theory of planar dynamical systems to study the effects of horizontal singular straight lines in nonlinear wave equations. Besides the well-known smooth traveling wave solutions and the non-smooth ones, four kinds of new bounded singular traveling wave solution are found for the first time. These singular traveling wave solutions are characterized by discontinuous second-order derivatives at some points, even though their first-order derivatives are continuous. Obviously, they are different from the singular traveling wave solutions such as compactons, cuspons, peakons. Their implicit expressions are also studied in this paper. These new interesting singular solutions, which are firstly founded, enrich the results on the traveling wave solutions of nonlinear equations. It is worth mentioning that the nonlinear equations with horizontal singular straight lines may have abundant and interesting new kinds of traveling wave solution.  相似文献   

4.
A body composed of a linear piezoelectric medium is considered. It is shown that the condition of local propagation for a singular hypersurface S of any given order r, with r≥1, can be expressed in terms of a suitable acoustic tensor. This tensor does not depend on the order r and coincides with the one used for plane progressive waves in the homogeneous case. Thus, just as in Linear Elasticity, the laws of propagation of such discontinuity waves are the same as those for plane progressive waves. For any r≥1 singular hypersurfaces are characteristic for the linear piezoelectric partial differential equations, whereas for r=0 singular hypersurfaces may be non-characteristic for such equations. A condition is written which characterizes the strong waves of order 0 that are characteristic. For the latter waves the aforementioned acoustic tensor can be used to express the condition of local propagation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The bending problem of Euler–Bernoulli discontinuous beams is dealt with. The purpose is to show that uniform-beam Green’s functions can be used to build efficient solutions for beams with internal discontinuities due to along-axis constraints and flexural-stiffness jumps. Specifically, upon deriving the equilibrium equation in the space of generalized functions, first it is seen that the original bending problem may be recast as linear superposition of a principal and an auxiliary bending problem, both involving a uniform reference beam and homogeneous boundary conditions. Then, based on the Green’s functions of the reference beam, closed-form solutions are developed for the principal beam response, while the auxiliary beam response is obtained by solving, in general, (r + 2s) algebraic equations written at the discontinuity locations, being r the number of discontinuities due to along-axis constraints, and s the number of flexural-stiffness jumps. In this manner, an appreciable reduction of computational effort is achieved as compared to alternative analytical solutions in the literature.  相似文献   

6.
The existence of solutions with surfaces of strong discontinuity is one of the principal features of the continua whose motions are described by systems of differential equations of hyperbolic type. Shock waves in gas dynamics, magnetohydrodynamics and in solids, detonation waves and combustion fronts, contact discontinuities, etc. are well-known examples of these surfaces. The discontinuities are usually investigated in accordance with the following scheme: 1) derivation of the boundary conditions on the discontinuity from the input system of differential equations in integral form; 2) verification of the fulfilment of the evolution conditions; 3) solution of the problem of the discontinuity structure and, when the occasion requires, obtaining supplementary boundary conditions; 4) investigation of the stability of the discontinuity. Only after obtaining positive results in all fours stages can we assert that the existence of the discontinuity is theoretically justified and that it can be used for constructing the solutions of particular boundary value problems. In the present paper attention will be concentrated on the problem of the stability of discontinuities, all the material, with the exception of the general results of Sec.1, being concerned with gas media and relating to discontinuities on whose surface the normal mass flow is nonzero. Having no way of exploring all the aspects of the problem of the stability of discontinuities in the same detail within the limited context of this paper, the authors hope to demonstrate the most general ideas and approaches which could subsequently be used to investigate the stability of discontinuities in various particular models of continua.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 3–22, March–April, 1996.  相似文献   

7.
线性黏弹性球面波的特征线分析   总被引:1,自引:0,他引:1  
基于ZWT黏弹性本构方程建立了体现高应变率效应的黏弹性球面波的控制方程组,包含5个偏微分方程,解5个未知量v、σr、σθ、εr和εθ。采用特征线法,问题转化为解3族特征线上的5个常微分方程,物理上图像清晰,数学上易于求解。特征线数值分析显示,黏弹性球面波的衰减和弥散效应超过线弹性球面波。球面扩散引起的环向拉应力是导致介质拉伸破坏的主因。进一步还针对强间断黏弹性球面波得出其衰减特性的解析表达式,表明这种更强的衰减特性是几何扩散效应和本构黏性效应两者共同作用的后果。  相似文献   

8.
The processes of wave disturbance propagation in a supersonic boundary layer with self-induced pressure [1–4] are analyzed. The application of a new mathematical apparatus, namely, the theory of characteristics for systems of differential equations with operator coefficients [5–8], makes it possible to obtain generalized characteristics of the discrete and continuous spectra of the governing system of equations. It is shown that the discontinuities in the derivatives of the solution of the boundary layer equations are concentrated on the generalized characteristics. It is established that in the process of flow evolution the amplitude of the weak discontinuity in the derivatives may increase without bound, which indicates the possibility of breaking of nonlinear waves traveling in the boundary layer.  相似文献   

9.
High speed underwater systems involve many modelling and simulation difficulties related to shocks, expansion waves and evaporation fronts. Modern propulsion systems like underwater missiles also involve extra difficulties related to non-condensable high speed gas flows. Such flows involve many continuous and discontinuous waves or fronts and the difficulty is to model and compute correctly jump conditions across them, particularly in unsteady regime and in multi-dimensions. To this end a new theory has been built that considers the various transformation fronts as ‘diffuse interfaces’. Inside these diffuse interfaces relaxation effects are solved in order to reproduce the correct jump conditions. For example, an interface separating a compressible non-condensable gas and compressible water is solved as a multiphase mixture where stiff mechanical relaxation effects are solved in order to match the jump conditions of equal pressure and equal normal velocities. When an interface separates a metastable liquid and its vapor, the situation becomes more complex as jump conditions involve pressure, velocity, temperature and entropy jumps. However, the same type of multiphase mixture can be considered in the diffuse interface and stiff velocity, pressure, temperature and Gibbs free energy relaxation are used to reproduce the dynamics of such fronts and corresponding jump conditions. A general model, based on multiphase flow theory is thus built. It involves mixture energy and mixture momentum equations together with mass and volume fraction equations for each phase or constituent. For example, in high velocity flows around underwater missiles, three phases (or constituents) have to be considered: liquid, vapor and propulsion gas products. It results in a flow model with 8 partial differential equations. The model is strictly hyperbolic and involves waves speeds that vary under the degree of metastability. When none of the phase is metastable, the non-monotonic sound speed is recovered. When phase transition occurs, the sound speed decreases and phase transition fronts become expansion waves of the equilibrium system. The model is built on the basis of asymptotic analysis of a hyperbolic total non-equilibrium multiphase flow model, in the limit of stiff mechanical relaxation. Closure relations regarding heat and mass transfer are built under the examination of entropy production. The mixture equation of state (EOS) is based on energy conservation and mechanical equilibrium of the mixture. Pure phases EOS are used in the mixture EOS instead of cubic one in order to prevent loss of hyperbolicity in the spinodal zone of the phase diagram. The corresponding model is able to deal with metastable states without using Van der Waals representation.  相似文献   

10.
The interaction of plane harmonic waves with a thin elastic inclusion in the form of a strip in an infinite body (matrix) under plane strain conditions is studied. It is assumed that the bending and shear displacements of the inclusion coincide with the displacements of its midplane. The displacements in the midplane are found from the theory of plates. The priblem-solving method represents the displacements as discontinuous solutions of the Lamé equations and finds the unknown discontinuities solving singular integral equations by the numerical collocation method. Approximate formulas for the stress intensity factors at the ends of the inclusion are derived  相似文献   

11.
Summary By applying compatibility conditions of Thomas for surfaces of discontinuity in continuum mechanics, the singular surfaces of first and second order which may occur in the theory of hydromagnetics are discussed. It is shown that first order singular surfaces are of two types; Alfvèn waves and contact type of discontinuities. The singular surfaces of second order turn out to be similar to singular surfaces of first order. An expression is obtained for the variation of the ‘strength’ of the Alfvèn wave as it propagates in a fluid at rest under constant pressure and magnetic field. It is shown that under certain conditions the strength of the Alfvèn wave as it propagates does not vary.  相似文献   

12.
IntroductionManyproblemsinmechanicsandmechanicalengineeringmaybeformulatedintoboundaryvalueproblemsforfirst_orsecond_orderellipticsystems.Lotsofscholarsandtheauthorsstudiedthem ( [1~ 6] ) .InthispaperwediscussthenonlinearRiemannproblemforgeneralsystemsofthefirst_orderlinearandquasi_linearequationsintheplane.1 TheNonlinearRiemannProblemforGeneralLinearEquationLetG beamultiplyconnecteddomaininthecomplexplaneEthatisboundedbyafinitenumberofclosed ,nonintersectingC1,αcurvesΓk,k=0 ,… ,mwit…  相似文献   

13.
Summary The governing differential equations of induced discontinuities behind longitudinal and transverse shock waves are derived for a class of linear materials with internal state parameters. These equations indicate that the behavior of the induced discontinuities depends, in particular, on the behavior of the shock amplitudes and non-linearly on the wave surface geometries. Solutions for the case of plane waves with initially flat profiles are obtained, and they indicate that the global behavior of the induced discontinuities need not be monotone depending on the interpretation of the material responses.
Sommario Le equazioni di evoluzione per discontinuità indotte da onde d'urto longitudinali e trasversali sono ricavate per una classe di materiali lineari con parametri di stato interni. Tali equazioni indicano che il comportamento delle discontinuitá indotte dipende, in particolare, dall'ampiezza dell'onda d'urto e, non linearmente, dalla seconda forma fondamentale della superficie. Le soluzioni, ottenute in corrispondenza di onde piane con profilo iniziale piatto, mostrano che il comportamento delle discontinuità indotte non è monotono ed é legato ai parametri che caratterizzano il materiale.
  相似文献   

14.
The mathematical model of a gasdynamic discontinuity is used in the area of study concerning gas flows with large gradients of gasdynamic functions. Gasdynamic functions before and after the discontinuity meet non-linear algebraic equations called the dynamic compatibility conditions on the discontinuities. Different modes of shock wave structures forming as a result of regular or irregular interference of the incoming discontinuities of different types are described. Ranges of the initial flow parameters definition such that either shock wave structures of different modes take place or interference equations have no solutions are determined. Most attention is given to arbitrary triple shock-wave configurations. Their classification is proposed. Differential characteristics of the steady flow are studied. The notion “differential characteristics” includes first derivatives of the fundamental gasdynamic parameters with respect to natural coordinates and curvatures of the discontinuities surfaces. Effect of unsteadiness on the triple-shock configuration is examined. Some problems arising at creation of complete local theory of steady and propagating gasdynamic discontinuities interference are formulated.  相似文献   

15.
The equations governing the equilibrium of a finitely deformed elastic solid are derived from the Principle of Minimum Potential Energy. The possibility of the deformation gradient and the stresses being discontinuous across certain surfaces in the body — “equilibrium shocks” — is allowed for. In addition to the equilibrium equations, natural boundary conditions and traction continuity condition, a supplementary jump condition which is to hold across the surface of discontinuity is derived. This condition is shown to imply that a stable equilibrium shock must necessarily be dissipation-free.  相似文献   

16.
The propagation, runup and rundown of long surface waves are numerically investigated, initially in one dimension, using a well‐balanced high‐resolution finite volume scheme. A conservative form of the nonlinear shallow water equations with source terms is solved numerically using a high‐resolution Godunov‐type explicit scheme coupled with Roe's approximate Riemann solver. The scheme is also extended to handle two‐dimensional complex domains. The numerical difficulties related to the presence of the topography source terms in the model equations along with the appearance of the wet/dry fronts are properly treated and extended. The resulting numerical model accurately describes breaking waves as bores or hydraulic jumps and conserves volume across flow discontinuities. Numerical results show very good agreement with previously presented analytical or asymptotic solutions as well as with experimental benchmark data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Using the fundamental solutions for three-dimensional transversely isotropic magnetoelectroelastic bimaterials, the extended displacements at any point for an internal crack parallel to the interface in a magnetoelectroelastic bimaterial are expressed in terms of the extended displacement discontinuities across the crack surfaces. The hyper-singular boundary integral–differential equations of the extended displacement discontinuities are obtained for planar interface cracks of arbitrary shape under impermeable and permeable boundary conditions in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. An analysis method is proposed based on the analogy between the obtained boundary integral–differential equations and those for interface cracks in purely elastic media. The singular indexes and the singular behaviors of near crack-tip fields are studied. Three new extended stress intensity factors at crack tip related to the extended stresses are defined for interface cracks in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. A penny-shaped interface crack in magnetoelectroelastic bimaterials is studied by using the proposed method.The results show that the extended stresses near the border of an impermeable interface crack possess the well-known oscillating singularity r?1/2±iε or the non-oscillating singularity r?1/2±κ. Three-dimensional transversely isotropic magnetoelectroelastic bimaterials are categorized into two groups, i.e., ε-group with non-zero value of ε and κ-group with non-zero value of κ. The two indexes ε and κ do not coexist for one bimaterial. However, the extended stresses near the border of a permeable interface crack have only oscillating singularity and depend only on the mechanical loadings.  相似文献   

18.
Different measures have been suggested for quantifying the amount of fragmentation in randomly compacted crushable aggregates. A most effective and popular measure is to adopt variants of Hardin's [1985. Crushing of soil particles. J. Geotech. Eng. ASCE 111(10), 1177-1192] definition of relative breakage ‘Br’. In this paper we further develop the concept of breakage to formulate a new continuum mechanics theory for crushable granular materials based on statistical and thermomechanical principles. Analogous to the damage internal variable ‘D’ which is used in continuum damage mechanics (CDM), here the breakage internal variable ‘B’ is adopted. This internal variable represents a particular form of the relative breakage ‘Br’ and measures the relative distance of the current grain size distribution from the initial and ultimate distributions. Similar to ‘D’, ‘B’ varies from zero to one and describes processes of micro-fractures and the growth of surface area. However, unlike damage that is most suitable to tensioned solid-like materials, the breakage is aimed towards compressed granular matter. While damage effectively represents the opening of micro-cavities and cracks, breakage represents comminution of particles. We term the new theory continuum breakage mechanics (CBM), reflecting the analogy with CDM. A focus is given to developing fundamental concepts and postulates, and identifying the physical meaning of the various variables. In this part of the paper we limit the study to describe an ideal dissipative process that includes breakage without plasticity. Plastic strains are essential, however, in representing aspects that relate to frictional dissipation, and this is covered in Part II of this paper together with model examples.  相似文献   

19.
The shallow water equations on a rotatable attracting sphere represent a system of hyperbolic equations on a compact manifold. These equations are derived in a spherical coordinate system from the integral laws of mass and total momentum conservation with account for the Coriolis and centrifugal forces. An analysis of the stability of discontinuous solutions with discontinuous waves and contact discontinuities is made using the closing law of total energy conservation, which represents a convex extension of the basic conservation-law system. The classes of stationary, one-dimensional (latitude-dependent only) exact solutions with contact discontinuities and discontinuous waves are constructed. Within the framework of the one-dimensional equations the test problem of wave flows resulting from the simultaneous break of two dams confining a fluid at rest in the vicinities of the poles is numerically modeled.  相似文献   

20.
The term fractal was coined by Benoît Mandelbrot to denote an object that is broken or fractured in space or time. Fractals provide appropriate models for many media for some finite range of length scales with lower and upper cutoffs. Fractal geometric structures with cutoffs are called pre-fractals. By fractal media, we mean media with pre-fractal geometric structures. The basis of this study is the recently formulated extension of continuum thermomechanics to such media. The continuum theory is based on dimensional regularization, in which we employ fractional integrals to state global balance laws. The global forms of governing equations are cast in forms involving conventional (integer-order) integrals, while the local forms are expressed through partial differential equations with derivatives of integer order. Using Hamilton??s principle, we derive the equations of motion of a fractal elastic solid under finite strains. Next, we consider one-dimensional models and obtain equations governing nonlinear waves in such a solid. Finally, we study shock fronts in linear viscoelastic solids under small strains. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions and reduce to conventional forms for continuous media with Euclidean geometries upon setting the dimensions to integers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号