首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monodisperse poly(glycidyl methacrylate-divinylbenzene) microspheres were functionalized with propyl sulfonic acid moieties to obtain beads negatively charged in a wide pH range. They were packed into fused-silica capillary of 50 micro, I.D. in order to separate proteins by capillary electrochromatography (CEC). Baseline separation of four basic proteins as well as three cytochrome c variants with an average column efficiency of 60,000 theoretical plates was obtained under isocratic elution conditions. The high efficiency is attributed to the uniformity of the column packing and the hydrophilic surface coverage of the polymer beads derived from the functionalization process. The effect of pH and salt concentration on protein separations was investigated and the results showed that the CEC separation mechanism is the combination of chromatographic retention and electrophoretic migration. Moreover, the column packed with the strongly acidic poly(glycidyl methacrylate-divinylbenzene) beads was also suitable for protein separations by micro-HPLC with a salt gradient. The comparison between the two kinds of elution modes shows that the column described here exhibited higher peak efficiency with isocratic elution in CEC than with gradient elution in micro-HPLC.  相似文献   

2.
High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 microm inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n-propanol and formamide as porogens and azobisisobutyronitrile as initiator. N-Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300 000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method.  相似文献   

3.
The separation mechanism in capillary electrochromatography (CEC) is a hybrid differential migration process, which entails the features of both high-performance liquid chromatography and capillary zone electrophoresis, i.e., chromatographic retention and electrophoretic migration. The adsorption of the different sample components on the stationary phase can be modified by the presence of the electric field across the column. Here, we use our previously published approach to decouple chromatographic retention from electrophoretic migration that allows us to investigate the "modification" of the retention process in CEC. This paper presents a methodology for characterization of changes in the retention of neutral and charged sample components, under identical conditions of stationary and mobile phase.  相似文献   

4.
Capillary columns with monolithic stationary phase were prepared from silanized fused-silica capillaries of 75 microns I.D. by in situ copolymerization of divinylbenzene either with styrene or vinylbenzyl chloride in the presence of a suitable porogen. The porous monolithic support in this study was used either directly or upon functionalization of the surface to obtain a stationary phase that was appropriate for the separation of peptides by capillary electrochromatography (CEC). The main advantages of monolithic columns are as follows. They do not need retaining frits, they do not have charged particles that can get dislodged in high electric field, and they have relatively high permeability and stability. Whereas such columns are designed especially for CEC, they find application in micro high-performance liquid chromatography (mu-HPLC) as well. Five different porogens were employed to prepare the monolithic columns that were examined for permeability and porosity. The flexibility of fused-silica capillaries was not adversely affected by the monolithic packing and the longevity of the columns was satisfactory. This may also be due to the polymerization technique, which resulted in a fluid-impervious outer layer of the monolith that precluded contact between the fused-silica surface and the liquid mobile phase. For the most promising columns, the conductivity ratios and the parameters of the simplified van Deemter equation, both in mu-HPLC and CEC, were evaluated. It was found that the efficiency of the monolithic columns in CEC was significantly higher than in mu-HPLC in the same way as observed with capillary columns having conventional particulate packing. This is attributed to the relaxation of band-broadening with electroosmotic flow (EOF) with respect to that with viscous flow. It follows then that the requirement of high packing uniformity to obtain high efficiency may also be relaxed in CEC. Angiotensin-type peptides were separated by CEC with columns packed with a monolithic stationary phase having fixed n-octyl chains and quaternary ammonium groups at the surface. Plate heights of about 8 microns were routinely obtained. The mechanism of the separation is based on the interplay between EOF, chromatographic retention and electrophoretic migration of the positively charged peptides. The results of the complex migration process, with highly nonlinear dependence of the migration times on the organic modifier and the salt concentration, cannot be interpreted within the framework of classical chromatography or electrophoresis.  相似文献   

5.
A linear polymer-coated capillary was prepared by in-capillary copolymerization of N-tert-butylacrylamide (TBAAm) with a charged monomer, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), after the capillary pretreatment with a bifunctional reagent. The coated capillaries were applied in capillary electrochromatographic (CEC) separation of small neutral compounds. Hydrophobic groups in the linear polymer, which were immobilized onto the capillary surface, functioned as the stationary phase in reversed-phase CEC separation, and charged groups in the linear polymer generated electroosmotic flow (EOF) along the column. The coated capillaries were prepared by a simple procedure. Moreover, the reproducibility with respect to EOF rate and migration times of the solutes was excellent. The results for CEC separation of small molecules using the linear polymer-coated capillaries are presented.  相似文献   

6.
In this study, the thrombin receptor antagonistic peptide TRAP-1 and its alanine-scan analogues, TRAP 2-6, have been employed as probes to characterise the performance of C18/SCX mixed-mode capillary electrochromatographic (CEC) columns. It was found that the resolution of this group of peptides could only be achieved in a narrow pH range with phosphate-based running electrolytes. The influence of the running electrolyte composition, e.g. the buffer choice, the ionic strength, the pH and the organic solvent content, on the electroosmotic flow (EOF) of these mixed-mode CEC columns was investigated. In addition, the retention mechanism for this group of peptide probes in the electrochromatographic process was studied by examining the effect of varying the running electrolyte composition. As a result, it can be concluded that the electrochromatographic separation of this set of peptides was mediated by a combination of electrophoretic migration and chromatographic retention involving both hydrophobic as well as ion exchange interactions. By modulating the running electrolyte composition, the hydrophobic or ion exchange components of the interaction process could be made to dominate the chromatographic retention of the peptides. Based on this strategy, a high-resolution separation of six closely related synthetic peptides was demonstrated with this mixed-mode CEC system.  相似文献   

7.
The potential of methacrylate-based mixed-mode monolithic stationary phases bearing sulfonic acid groups for the separation of positively charged analytes (alkylanilines, amino acids, and peptides) by capillary electrochromatography (CEC) is investigated. The retention mechanism of protonated alkylanilines as positively charged model solutes on these negatively charged mixed-mode stationary phases is investigated by studying the influence of mobile phase and stationary phase parameters on the corrected retention factor which was calculated by taking the electrophoretic mobility of the solutes into consideration. It is shown that both solvophobic and ion-exchange interactions contribute to the retention of these analytes. The dependence of the corrected retention factor on (1) the concentration of the counter ion ammonium and (2) the number of methylene groups in the alkyl chain of the model analytes investigated shows clearly that a one-site model (solvophobic and ion-exchange interactions take place simultaneously at a single type of site) has to be taken to describe the retention behaviour observed. Comparison of the CEC separation of these charged analytes with electrophoretic mobilities determined by open-tubular capillary electrophoresis shows that mainly chromatographic interactions (solvophobic and ion-exchange interactions) are responsible for the selectivity observed in CEC, while the electrophoretic migration of these analytes plays only a minor role.  相似文献   

8.
Li Y  Xiang R  Horváth C  Wilkins JA 《Electrophoresis》2004,25(4-5):545-553
A new kind of monolithic capillary column was prepared for capillary electrochromatography (CEC) with a positively charged polymer layer on the inner wall of a fused-silica capillary and a neutral monolithic packing as the bulk stationary phase. The fused-silica capillary was first silanized with 3-glycidoxypropyltrimethoxysilane (GPTMS). Polyethyleneimine (PEI) was then covalently bonded to the GPTMS coating to form an annular positively charged polymer layer for the generation of electroosmotic flow (EOF). A neutral bulk monolithic stationary phase was then prepared by in situ copolymerization of vinylbenzyl chloride (VBC) and ethylene glycol dimethacrylate in the presence of 1-propanol and formamide as porogens. Benzyl chloride functionalities on the monolith were subsequently hydrolyzed to benzyl alcohol groups. Effects of pH on the EOF mobility of the column were measured to monitor the completion of reactions. Using a column with this design, we expected general problems in CEC such as irreversible adsorption and electrostatic interaction between stationary phase and analytes to be reduced. A peptide mixture was successfully separated in counter-directional mode CEC. Comparison of peptide separations in isocratic monolithic CEC, gradient HPLC and capillary zone electrophoresis (CZE) indicated that the separation in CEC is governed by a dual mechanism that involves a complex interplay between selective chromatographic retention and differential electrophoretic migration.  相似文献   

9.
For the separation of proteins and peptides by capillary electrochromatography (CEC), columns with a monolithic stationary phase were prepared from silanized fused-silica capillaries of 50 microm I.D. by in situ copolymerization of glycidyl methacrylate, methyl methacrylate and ethylene glycol dimethacrylate in the presence of propanol and formamide as porogens. The epoxide groups at the surface of the porous monolith were reacted with N-ethylbutylamine to form fixed tertiary amino functions with ethyl- and butyl-chains. A mixture of ribonuclease A, insulin, alpha-lactalbumin and myoglobin was separated isocratically by counterdirectional CEC with hydro-organic mobile phases containing acetonitrile and sodium phosphate buffer, pH 2.5. The separation of four angiotensin type peptides by CEC was also achieved under similar conditions. The elution order of proteins was similar to that obtained in reversed-phase chromatography. Plots of the migration factors for proteins and peptides against the acetonitrile concentration exhibit opposite trends. This is most likely due to the greater chromatographic retention and lower electrophoretic migration velocity of proteins than that of peptides in the counterdirectional CEC system. From this it is concluded that the separation is governed by a dual mechanism that involves the complex interplay between selective chromatographic retention and differential electrophoretic migration.  相似文献   

10.
Packed column capillary electrochromatography (CEC), open-tubular CEC and microcolum liquid chromatography (LC) using a cholesteryl silica bonded phase have been studied to compare the retention behavior for benzodiazepines. It has been found that packed column CEC gives better resolution, faster analysis time than microcolumn LC for benzodiazepines maintaining similar selectivity except for some solutes which are charged species under the separation conditions. However, open-tubular CEC gave different selectivities to a larger extent for charged benzodiazepines from that which should be produced by the chromatographic properties of the cholesteryl silica phase. Charged species migration times are mainly influenced by electrophoretic mobility rather than the chromatographic interactions.  相似文献   

11.
The use of capillary electrochromatography (CEC) for the separation by isocratic elution of synthetic peptides, proteins as well as the tryptic digest of cytochrome c has been demonstrated. The monolithic porous stationary phase was prepared from silanized fused-silica capillaries of 75 microm I.D. by in situ copolymerization of vinylbenzyl chloride and ethylene glycol dimethacrylate in the presence of propanol and formamide as the porogens. The chloromethyl groups at the surface of the porous monolith were reacted with N,N-dimethylbutylamine to form a positively charged chromatographic surface with fixed n-butyl chains. Results of studies on the influence of temperature and mobile phase composition on the retention and selectivity of separation by CEC demonstrated the feasibility of rapid polypeptide analysis and tryptic mapping at elevated temperature with high resolution and efficiency. Typically the chromatography of a tryptic digest of cytochrome c took about 5 min at 55 degrees C and 75 kV/m with hydro-organic mobile phases containing acetonitrile in 50 mM phosphate buffer, pH 2.5. For peptides and proteins plots of logarithmic k'cec against acetonitrile concentration were nonlinear, whereas Arrhenius plots for the mobilities were nearly linear. Comparison of the separation of such samples under conditions of CEC and capillary zone electrophoresis (CZE) indicates that the mechanism of separation in CEC is unique and leads to a chromatographic profile different from that obtained by CZE.  相似文献   

12.
Weak anion-exchange (WAX) type chiral stationary phases (CSPs) based on tert.-butyl carbamoyl quinine as chiral selector (SO) and different types of silica particles (porous and non-porous) as chromatographic support are evaluated in packed capillary electrochromatography (CEC). Their ability to resolve the enantiomers of negatively charged chiral analytes, e.g., N-derivatized amino acids, in the anion-exchange mode and their electrochromatographic characteristics are described in dependence of several mobile phase parameters (pH, buffer type and concentration, organic modifier type and concentration) and other experimental variables (electric field strength, capillary temperature). The inherent "zwitterionic" surface character of such silica-based WAX type CSPs (positively charged SO and negatively charged residual silanols) allows the reversal of the electroosmotic flow (EOF) towards the anode at pH values below the isoelectric point (pI) of the modified surface, whereas a cathodic EOF results at pH values above the pI. Since for negatively charged analytes also an electrophoretic transport increment has to be considered, which can be either in or against the EOF direction, several distinct modes of elution have been observed under different stationary phase and mobile phase conditions: (i) co-electrophoretic elution of the negatively charged solutes with the anodic EOF in the negative polarity mode, (ii) counter-electrophoretic elution with the cathodic EOF in the positive polarity mode, and (iii) electrophoretically dominated elution in the negative polarity mode with a cathodic EOF directed to the injection end of the capillary. Useful enantioseparations of chiral acids have been obtained with all three modes. Enantioselectivity values as high as under pressure-driven conditions and theoretical plate numbers up to 120000 per meter could be achieved under electrically driven conditions. A repeatability study yielded RSD values below 2% for retention times and RSD values in the range of 5-10% for theoretical plate numbers and resolution, thus clearly establishing the reliability of the investigated anion-exchange type CEC enantioseparation methods.  相似文献   

13.
A macroporous, spherical, 7 μm, polystyrene–divinylbenzene (PS–DVB), reversed-phase adsorbent (PRP-1) was evaluated as a stationary phase for the capillary electrochromatographic (CEC) separation of neutral, acidic, and basic analytes of pharmaceutical interest. Electroosmotic flow (EOF) for a PRP-1 packed capillary is nearly constant over the pH 2 to 10 range and is higher than for a silica-based C18 packed capillary on the acidic side. EOF increases with an increase in buffer acetonitrile concentration or as applied potential increases. As analyte hydrophobicity increases, analyte retention and migration time increases. Increasing buffer acetonitrile concentration reduces analyte partitioning with the PS–DVB stationary phase and analyte retention and migration time decreases. When exchange sites are present on the PS–DVB copolymer, EOF (EOF is reversed for the anion-exchanger) increases as the exchange capacity increases. An increased exchange capacity also reduces partitioning of the analyte with the PS–DVB matrix and analyte retention and migration time decrease. Because of excellent stability in an acid environment, the PRP-1 packed capillary can be used in strong acid buffer solution and weak acid and base analytes depending on pKa values can be separated as neutral species and cations, respectively. CEC separations on a PRP-1 capillary of neutral steroids, weak base pharmaceuticals (separation as cations), purines and pyrimidines (as cations), fatty acids (as undissociated species), and sulfa derivatives (as cations) are described. Efficiency for the PRP-1 packed capillary for acetone or thiourea as the analyte is about 6·104 plates m−1.  相似文献   

14.
The influence of temperature, T, on the retention times, peak widths, peak symmetry coefficients and theoretical plate numbers of two small linear peptides, [Met5]enkephalin and [Leu5]enkephalin, has been studied with capillary electrochromatography (CEC) capillary columns of 100 microm I.D. and 250 mm packed length with a total length of 335 mm, containing 3 microm Hypersil n-octadecyl bonded silica. With increasing column temperature from 15 to 60 degrees C, the electroosmotic flow (EOF) and the column efficiencies increased, whereas the retention coefficients (Kcec) of both peptides decreased. A linear relationship was found between the EOF value and the square root of the temperature over this temperature range, with a linear regression correlation of 0.998. Non linear Van 't Hoff plots (In Kcec versus 1/T) were observed for these peptides between 15 and 60 degrees C, suggesting that a phase-transition occurred with the n-octadecyl chains bonded on the silica surface, affecting the CEC retention behaviour of these peptides. In CEC systems, the Kcec values of peptides incorporate contributions from both electrophoretic migration and chromatographic retention. Positive and negative Kcec values can, in principle, thus arise with these charged analytes. However, the Kcec values of the enkephalin peptides under all temperature conditions studied were positive with an eluent composed of water-50 mM NH4OAc/AcOH, pH 5.2-acetonitrile (5:2:3, v/v) and therefore the chromatographic component dominates the retention process with these small peptides under these conditions.  相似文献   

15.
In this report, a novel polar monolithic capillary column is described for normal phase CEC (NP-CEC) of representative polar compounds including mono- and oligosaccharides, peptides, and basic drugs. The polar monolithic column, which was described in detail in the preceding paper, consisted of silica-based monolith bonded with 1H-imidazole-4,5-dicarbonitrile (IDCN) and is denoted as 2CN-OH-Monolith. Various retention parameters for neutral polar solutes (e.g., mono- and oligosaccharides) and charged polar solutes (e.g., peptides and basic drugs) were evaluated over a wide-range of elution conditions. These retention parameters yielded quantitative assessment for the polar interactions between the model solutes and the stationary phase under investigation as well as the effect of electromigration of charged solutes on their overall migration in NP-CEC. Furthermore, this investigation demonstrated that despite the possibility of achieving isocratic separation in NP-CEC for widely differing polar species, multistep-gradient elution in NP-CEC is preferred to bring about the rapid separation of a large number of polar species in a single run.  相似文献   

16.
Jin W  Fu H  Huang X  Xiao H  Zou H 《Electrophoresis》2003,24(18):3172-3180
Preparation of a poly(styrene-co-divinylbenzene-co-methacrylic acid) monolithic stationary phase for the use in capillary electrochromatography (CEC) has been improved by optimizing the polymerization conditions. It is observed that the reaction time strongly affects column efficiency, while the proportion of isooctane in porogen influences peak symmetry of some solutes seriously. The lifetime of the monolithic columns prepared mainly depends on the pH of buffers used. Reproducibility of electroosmotic flow (EOF) from batch to batch columns are lower than 2.8% relative standard deviation. Unlike other types of capillary electrochromatographic monoliths, a pH-dependent EOF was observed on this type of column. Separation of various types of compounds including aromatic hydrocarbons, hormones, anilines, basic pharmaceuticals, and peptides was achieved. The facile preparation and wide application of this monolithic column may make styrene-based polymer a potential stationary phase in CEC.  相似文献   

17.
Dong J  Ou J  Dong X  Wu R  Ye M  Zou H 《Journal of separation science》2007,30(17):2986-2992
A CEC monolithic column with strong cation-exchange (SCX) stationary phase based on hydrophilic monomers was prepared by in situ polymerization of acrylamide, methylenebisacrylamide, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) in a complete organic binary porogenic solvent consisting of DMSO and dodecanol. The sulfonic groups provided by the monomer AMPS on the surface of the stationary phase generate an EOF from anode to cathode, and serve as an SCX stationary phase at the same time. The monolithic stationary phase exhibited normal-phase chromatographic behavior for neutral analytes. For charged analytes, electrostatic interaction/repulsion with the monolith was observed. The strong SCX monolithic column has been successfully employed in the electrochromatographic separation of basic drugs, peptides, and alkaloids extracted from natural products.  相似文献   

18.
In this investigation, various capillary electrochromatographic (CEC) experiments have been employed to characterize the properties of etched, chemically-modified surfaces of open tubular capillary columns with peptides as solute probes and under conditions of variable voltage, temperature and solvent composition. The separation performance of etched capillaries with either n-octadecyl or liquid crystal moieties derived from a cholesterol phase bonded to the surface were compared. With the liquid crystal bonded species, interesting and significantly different variations in retention behavior of peptides are obtained compared to those observed with the corresponding n-octadecyl modified surfaces by changes in temperature, solvent composition and field strength. These peptide separations illustrate the usefulness of this CEC approach for practical applications, where both the retention characteristics of the charged analytes as well as the selectivity differences due to the surface properties of the etched chemically-modified surfaces of open tubular capillary columns can be rationally modulated. As in HPLC, appropriate choice of CEC experimental variables, including the chemical properties of the immobilized ligand(s), represents a powerful tool for optimizing resolution.  相似文献   

19.
Steiner F  Scherer B 《Electrophoresis》2005,26(10):1996-2004
Peptide separations are regarded as a promising application of capillary electrochromatography (CEC) and, at the same time, a suitable model to elucidate its mixed separation mechanism when charged analytes are involved. In this paper, studies on the separation of small peptides (2-4 amino acids) on a Spherisorb octadecyl silane (ODS) phase at acidic pH and on a strong anion exchange (SAX)/C18 mixed mode phase at weakly basic pH are reported. For the ODS phase a comparison of CEC, capillary zone electrophoresis (CZE) and high-performance liquid chromatography (HPLC) under identical buffer/eluent conditions is presented. The predicted retention factors for CEC under the assumption of simple superposition of HPLC retention and CZE migration matched the measured results for the peptides that had small retention factors in HPLC. For both types of stationary phases, a variation of the acetonitrile content in the mobile phase led to a wide range of retention factors, including negative values when co-electroosmotic migration was dominant. Though both the ODS and the SAX/C18 phase offer unique advantages, the SCX/C18 phase at pH 9 provides more flexibility to alter separation selectivity for the selected peptides.  相似文献   

20.
Open-tubular columns for capillary electrochromatography (CEC) were formed by immobilising dodecanethiol gold nanoparticles on prederivatised 3-aminopropyl-trimethoxysilane (APTMS) or 3-mercaptopropyl-trimethoxysilane (MPTMS) fused-silica capillaries. The initial stage of this research involved the synthesis and characterisation of dodecanethiol gold nanoparticles, with tunnelling electron microscopy analysis of the dispersed phase of the gold nanoparticles dispersion in CHCl3, revealing spherical particles. The surface features of an Au-MPTMS coated capillary column were determined using scanning electron microscopy. The electroosmotic flow characteristics of Au-APTMS and Au-MPTMS capillary columns were then determined, by varying the pH and the voltage. The electrochromatographic properties of the gold nanoparticles CEC capillaries were investigated using a "reversed-phase" test mixture of thiourea, benzophenone and biphenyl and selected pyrethroid pesticides. Efficient separations of benzophenone and biphenyl solutes on Au-MPTMS and Au-APTMS capillary columns were obtained, as were linear plots of logarithm capacity factor versus % MeOH. A study of the reproducibility of retention for these solutes on Au-APTMS, Au-MPTMS and on a loosely coated capillary demonstrated the necessity of a coupling agent to prevent the gold nanoparticles from washing-off. These dodecanethiol gold capillary columns are easier to produce and operate than packed capillary columns. The research work confirms the use of gold nanoparticles as a novel phase for open-tubular CEC, demonstrating reproducible retention and characteristic reversed-phase behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号