首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonstoichiometric variation of oxygen content in Nd2−xSrxNiO4+δ (x=0, 0.2, 0.4) and decomposition P(O2) were determined by means of high temperature gravimetry and coulometric titration. The measurements were carried out in the temperature range from 873 to 1173 K and the P(O2) range from 10−20 to 1 bar. Nd2−xSrxNiO4+δ shows the oxygen excess and the oxygen deficient composition depending on P(O2), temperature, and the Sr content. To evaluate the characteristics of oxygen nonstoichiometric behavior, partial molar enthalpy of oxygen was calculated. The value of partial molar enthalpy of oxygen slightly approaches zero as δ increases in the oxygen excess region while that is independent of δ in the oxygen deficient region. Discussion was made by comparing data of this study with nonstoichiometric and thermodynamic data of La2−xSrxNiO4+δ: Nd2−xSrxNiO4+δ show more oxygen excess than La2−xSrxNiO4+δ in the higher P(O2) region, while the nonstoichiometric behavior in the oxygen deficient composition is almost the same. The variation of partial molar enthalpy of oxygen with δ for Nd2−xSrxNiO4+δ in the oxygen excess region is much smaller than that of La2−xSrxNiO4+δ. The oxygen nonstoichiometric behavior of Nd2−xSrxNiO4+δ is more ideal-solution-like than that of La2−xSrxNiO4+δ.  相似文献   

2.
The Ruddlesden-Popper ferrite Sr3Fe2O6+δ and its titania-doped derivatives Sr3Fe2−xTixO6+δ, where 0<x≤2, have been characterized by X-ray powder diffraction and thermogravimetry. The changes in oxygen content and crystal lattice parameters are consistent with titanium ions entering the solid solution in 4+ oxidation state with octahedral oxygen coordination. Electronic conductivity measurements on polycrystalline Sr3Fe2O6+δ and Sr3Fe0.8Ti1.2O6+δ in the temperature range 750-1000°C and oxygen partial pressures (pO2) varying between 10−20 and 0.5 atm revealed that the predominant partial conductivity of electrons is proportional to pO2−1/4 in the low pO2 region, while the predominant partial contribution of holes to the conductivity is proportional to pO2+1/4 in the high pO2 range. The pressure-independent oxygen ion conductivity is found to decrease with the increase in titanium content. A possible pathway for oxygen ion migration is discussed in relation to disorder in the oxygen sublattice and titanium doping.  相似文献   

3.
The total electrical conductivity and the Seebeck coefficient of perovskite phases La0.3Sr0.7Fe1−xGaxO2.65+δ (x=0-0.4) were determined as functions of oxygen nonstoichiometry in the temperature range 650-950°C at oxygen partial pressures varying from 10−4 to 0.5 atm. Doping with gallium was found to decrease oxygen content, p-type electronic conduction and mobility of electron holes. The results on the oxygen nonstoichiometry and electrical properties clearly show that the role of gallium cations in the lattice is not passive, as it could be expected from the constant oxidation state of Ga3+. The nonstoichiometry dependencies of the partial molar enthalpy and entropy of oxygen in La0.3Sr0.7(Fe,Ga)O2.65+δ are indicative of local inhomogeneities, such as local lattice distortions or defect clusters, induced by gallium incorporation. Due to B-site cation disorder, this effect may be responsible for suppressing long-range ordering of oxygen vacancies and for enhanced stability of the perovskite phases at low oxygen pressures, confirmed by high-temperature X-ray diffraction and Seebeck coefficient data. The values of the electron-hole mobility in La0.3Sr0.7(Fe,Ga)O2.65+δ, which increases with temperature, suggest a small-polaron conduction mechanism.  相似文献   

4.
The n=3 Aurivillius material Bi2Sr2Nb2.5Fe0.5O12 is investigated and combined structural refinements using neutron powder diffraction (NPD) and X-ray powder diffraction data (XRPD) data reveal that the material adopts a disordered, tetragonal (I4/mmm) structure at temperatures down to 2 K. Significant ordering of Fe3+ and Nb5+ over the two B sites is observed and possible driving forces for this ordering are discussed. Some disorder of Sr2+ and Bi3+ over the M and A sites is found and is consistent with relieving strain due to size mismatch. Highly anisotropic thermal parameters for some oxygen sites suggest that the local structure may be slightly distorted with some rotation of the octahedra. Magnetic measurements show that the material behaves as a Curie-Weiss paramagnet in the temperature range studied with no evidence of any long-range magnetic interactions. Solid solutions including Bi3−xSrxNb2FeO12, Bi2Sr2−xLaxNb2FeO12 and Bi2Sr2Nb3−xFexO12 were investigated but single-phase materials were only successfully synthesised for a narrow composition range in the Bi2Sr2Nb3−xFexO12 system.  相似文献   

5.
In order to elucidate the relation between thermodynamic quantities, the defect structure, and the defect equilibrium in La2−xSrxNiO4+δ, statistical thermodynamic calculation is carried out and calculated results are compared to those obtained from experimental data. Partial molar enthalpy of oxygen and partial molar entropy of oxygen are obtained from δ-P(O2)-T relation by using Gibbs-Helmholtz equation. Statistical thermodynamic model is derived from defect equilibrium models proposed before by authors, localized electron model and delocalized electron model which could well explain the variation of oxygen content of La2−xSrxNiO4+δ. Although assumed defect species and their equilibrium are different, the results of thermodynamic calculation by localized electron model and delocalized electron model show minor difference. Calculated results by the both models agree with the thermodynamic quantities obtained from oxygen nonstoichiometry of La2−xSrxNiO4+δ.  相似文献   

6.
Novel complex oxides Sr2Ga1+x In1?x O5, x?=?0.0–0.2 with brownmillerite-type structure were prepared in air at T?=?1,273 K, 24 h. Study of the crystal structure of Sr2Ga1.1In0.9O5 refined using X-ray powder diffraction data (S.G. Icmm, a?=?5.9694(1) Å, b?=?15.2091(3) Å, c?=?5.7122(1) Å, χ 2?=?2.48, R F 2? =?0.0504, R p?=?0.0458) revealed ordering of Ga3+ and In3+ cations over tetrahedral and octahedral positions, respectively. A partial replacement of Sr2+ by La3+ according to formula Sr1?y La y Ga0.5In0.5O2.5+y/2, leads to the formation of a cubic perovskite (a?=?4.0291(5) Å) for y?=?0.3. No ordering of oxygen vacancies or cations was observed in Sr0.7La0.3Ga0.5In0.5O2.65 as revealed by electron diffraction study. The trace diffusion coefficient (D T) of oxygen for cubic perovskite Sr0.7La0.3Ga0.5In0.5O2.65 is in the range 2.0?×?10?9–6.3?×?10?8 cm2/s with activation energy 1.4(1)?eV as determined by isotopic exchange depth profile technique using secondary ion mass spectrometry at 973–1,223 K. These values are close to those reported for Ca-doped ZrO2. High-temperature electrical conductivity of Sr0.7La0.3Ga0.5In0.5O2.65 studied by AC impedance was found to be nearly independent on oxygen partial pressure. Calculated values of activation energy at T?<?1,073 K for hole and oxide-ion conductivities are 0.96 and 1.10 eV, respectively.  相似文献   

7.
Magnetic susceptibilities of ScyU1−yO2+x solid solutions have been measured from 2.7 K to room temperature. The magnetic moment and Weiss constant have been determined in the temperature range in which the Curie-Weiss law holds. For the solid solutions showing antiferromagnetic transition, the Néel temperature has also been determined. The substitution of Sc3+ for U4+ was found to effect not only magnetic dilution of UO2, but also oxidation of U4+ to U5+. Excess oxygen ions which entered the interstitial sites, weakened the antiferromagnetic interaction between uranium ions and oxidized U4+ to U5+. The effect of oxygen vacancies on the antiferromagnetic interaction was small in the concentration range of this experiment (0.8 a/o).  相似文献   

8.
Studies on the role of oxygen vacancy in structural change of nonstoichiometric perovskites and a property of oxygen-deficient perovskite-related K2NiF4 compounds are reviewed.The structural changes on which the authors focused are cation ordering and lattice distortion. The relationship between the distortion and oxygen vacancy was investigated by comparing the structures of Sr2(Sr1-xMx)TaO6-d (M = Ca2+ and Nd3+) solid solutions. It was found that distortion of a perovskite-type lattice decreased with an increasing amount of oxygen vacancies. In order to investigate the relationship between the cation ordering on octahedral sites and oxygen vacancy, structures of stoichiometric Sr2-xLaxCo1-yTa1+yO6 and oxygen-deficient Sr2-xLaxMg1-yTa1+yO6-d solid solutions were compared. The authors' work reveals that the cation ordering affects the amount of oxygen vacancies in addition to cation charge and size.  相似文献   

9.
We report the synthesis of SrMn1−xGaxO3−δ perovskite compounds and describe the dependence of their phase stability and structural and physical properties over extended cation and oxygen composition ranges. Using special synthesis techniques, we have extended the solubility limit of Ga3+ in the cubic perovskite phase to x≈0.33. Higher Ga concentrations lead to mixed phases until a single-phase ordered double-perovskite structure is obtained at x=0.5, i.e., Sr2MnGaO6−δ. In the cubic perovskite phase the maximum oxygen content is 3−x/2, which corresponds to 100% Mn4+. All maximally oxygenated solid solution compounds are found to order antiferromagnetically, with the transition temperature linearly decreasing as Ga content increases. Reducing the oxygen content introduces frustration into the magnetic system and a spin-glass state is observed for SrMn0.7Ga0.3O2.5 below 30 K. The brownmillerite phase at low oxygen content, Sr2MnGaO5, is found to have Icmm crystallographic symmetry. At 12 K its magnetic structure is found to order in the Icm′m′ magnetic symmetry corresponding to a G-type antiferromagnetic structure of Mn3+ ions. At higher oxygen content, Sr2MnGaO5.5 is found to have Cmmm crystallographic symmetry with disordered oxygen vacancies. At 12 K two competing long-range magnetic structures are found for the Mn4+ sublattice having CIm′m′m symmetry (G-type), and CPm′m′m symmetry (C-type), together with a G-type short-range magnetic correlations.  相似文献   

10.
The magnetic and structural properties of the solid solution SrFexRu1?xO3?y (0 ? x ? 0.5) have been studied using 57Fe and 99Ru Mössbauer spectroscopy and other techniques. These phases, which are here reported for the first time, have a distorted perovskite structure. The iron substitutes exclusively as Fe3+ and thereby causes oxygen deficiency, but has little effect on the magnetic behaviour of the Ru4+ until x > 0.2, whereupon the metallic band system begins to revert to a localized electron structure. The properties of a sample with x = 0.3 are complex and intermediate in character. For x > 0.3 the oxygen deficiency is reduced by substantial oxidation to Ru5+ until at x = 0.5 the system corresponds to Sr2Fe3+Ru5+O6.  相似文献   

11.
A new series of Sr-based Hg-1212 superconducting cuprate (Hg1−ySey)Sr2(Y1−xCax)Cu2O6+δ (y=0.25; 0.0?x?0.7) have been successfully synthesized using a highly homogenous and reactive precursor Sr2(Y1−xCax)Cu2Oz prepared by the citrate sol-gel process. This chemical method is fast, cheap, reproducible and more efficient than the traditional solid-state reaction method. X-ray diffraction (XRD) and Energy dispersive X-ray analyses (EDX) studies have shown that Se is required for stabilization of the Sr-based Hg-1212 phase (Hg1−ySey)Sr2YCu2O6+δ; y≈0.25. On the other hand, electrical resistivity and magnetic susceptibility measurements indicated that substitution of Y by Ca is necessary to induce superconductivity in the 1212 (Hg0.75Se0.25)Sr2(Y1−xCax)Cu2O6+δ samples. Superconductivity is observed only for samples with x?0.3 and Tc increases with increasing Ca content as well as O2-annealing. A maximum Tc(onset) of 85 K is found in the (Hg0.75Se0.25)Sr2(Y0.3Ca0.7)Cu2O6.84 sample annealed in an oxygen atmosphere. The structure of O2-annealed samples was investigated by the Rietveld refinement. For all samples, it was found that Se substitutes at the Hg site. Each Se atom is surrounded by four oxygen atoms O(3), but these are not at the ideal site. Rather, these oxygen atoms are shifted along the [110] direction ((0.3989, 0.3989, 0) in the case of x=0.5), implying a four-fold split site with an occupancy of 0.22(2) for each of them.  相似文献   

12.
The solid solutions Sr3?xLaxMn2O7 (0 ≤ x ≤ 1.50) and Sr3?xLnxMn2O7 (Ln = Nd, Sm, Gd; 0 ≤ x ≤ 1.40) with Sr3Ti2O7-type structure have been prepared. Their cell parameters and ca ratios are related to the size of the rare earths and to the Mn3+ ion concentration.  相似文献   

13.
The cuprates La2 ? x Sr1 + x Cu2O6 + δ(x = 0, 0.1, 0.2) are synthesized by solid-state method. Their dc conductivity was studied over the 373 to 1173 K temperature range and 10 to 2.1 × 104 Pa oxygen partial pressure range by using four-probe technique. It is shown that the cuprate conductivity in air is maximal at ~673 K; it is 60 S/cm for La2SrCu2O6.09; 68 S/cm, for La1.9Sr1.1Cu2O6.18; and 81 S/cm, for La1.8Sr1.2Cu2O6.10. The thermal expansion coefficient of La2SrCu2O6.09 is determined by thermomechanical method and high-temperature X-ray diffraction method; its value (16 ppm K?1) shows that the material is compatible with the ceria-based solid electrolytes during the thermal cycling.  相似文献   

14.
Perovskite-structure oxides La1?x Sr x FeO3?y (x = 0, 0.2, 0.6, 1) were synthesized by the mechanochemical method. In order to refine the stoichiometric composition and the charge state of ions, these samples were studied by X-ray photoelectron spectroscopy (XPS). An investigation of perovskites with x = 0, 0.2, and 0.6 in air at room temperature showed that these samples do not contain oxygen vacancies (y = 0), i.e., they are fully oxidized. Hence, to produce electrical neutrality, these samples should contain iron(4+) cations in an amount proportional to the degree of substitution (x) of strontium(2+) for lanthanum(3+). However, no Fe4+ cations were found in the oxides. All perovskites contain only Fe3+ cations, oxygen ions O2? along with oxygen ions with reduced electron density (O?). These data provid evidence of the possible electron density redistribution from oxygen ions to iron cations. The fact that the oxides contain oxygen ions with reduced electron density suggests that weakly bound lattice oxygen in substituted perovskites is represented by O? ions.  相似文献   

15.
We report the synthesis of Aurivillius-type phases incorporating magnetic M4+ cations (M=Mn, Ru, Ir), based on the substitution of M4+ for Ti4+ in Bi2Sr2(Nb,Ta)2TiO12. The key to incorporating these magnetic transition metal cations appears to be the partial substitution of Sr2+ for Bi3+ in the α-PbO-type layer of the Aurivillius phase, leading to a concomitant decrease in the M4+ content; i.e., the composition of the prepared compounds was Bi2−xSr2+x(Nb,Ta)2+xM1−xO12, x≈0.5. These compounds only exist over a narrow range of x, between an apparent minimum (x≈0.4) Sr2+ content in the α-PbO-type [Bi2O2] layer required for Aurivillius phases to form with magnetic M4+ cations, and an apparent maximum (x≈0.6) Sr2+ substitution in this [Bi2O2] layer. Rietveld-refinement of synchrotron X-ray powder diffraction data making use of anomalous dispersion at the Nb and Ru K edges show that the overwhelming majority of the incorporated M cations occupy the central of the three MO6 octahedral layers in the perovskite-type block. Magnetic susceptibility measurements are presented and discussed in the context of the potential for multiferroic (magnetoelectric) properties in these materials.  相似文献   

16.
LaxSr1−xMnO2.6+δ (x=0.1-0.4) compounds have been obtained by low-temperature annealing of stoichiometric materials in hydrogen. La0.1Sr0.9MnO2.6+δ (δ=0.15) and La0.3Sr0.7MnO2.6, tetragonal (P4/m), and La0.2Sr0.8MnO2.6, pseudo-tetragonal monoclinic (P2/m), structures are isostructural with oxygen-vacancy-ordered Sr5Mn5O13 (, caP). La0.4Sr0.6MnO2.6 shows cubic perovskite structure with disordered oxygen vacancies. In the vacancy-ordered (LaxSr1−x)5Mn5O13 phases four out of five Mn cations are Mn3+ and show a typical Jahn-Teller elongated pyramidal coordination while the fifth one Mn(4−5x)+, in octahedral environment, shows decreasing formal charge from Mn4+ (x=0) to Mn2.5+x=0.3. This unusual selective doping of the octahedral site produces structural strain due to increasing size of the Mn(4−5x)+ and, in the case of (La0.2Sr0.8)5Mn5O13, the unusual compressed octahedral arrangement of oxygen atoms around it. The coordination geometry implies that either the dx2-y2 orbital is occupied, which would be a rare example of inverted occupancy of eg orbitals in manganites, or that disordered Mn3+ apically elongated MnO6 octahedra are present with normal electronic configuration , and the observed bond distances are the average of the long and intermediate in-plane Mn-O bonds. Several structural features favor the second case.  相似文献   

17.
Total conductivity of Sr6 − 2x Ta2 + 2x O11 + 3x (0 ≤ x ≤ 0.33) solid solutions with a cryolite structure is studied in the atmosphere with a low water vapor content under variation of the temperature (500 < T < 1000°C) and oxygen activity in the gas phase (10−18 < aO2 < 0.21). Conductivity is divided into components. It is found that both the oxygen-ionic conductivity and the mobility of oxygen ions increase and the percentage of p-type electronic conductivity decreases at an increase in the concentration of oxygen vacancies. It is shown that compositions with a high strontium oxide content (0 ≤ x < 0.15) and accordingly high concentration of oxygen vacancies correspond to the maximum values of the oxygen-ionic conductivity and low activation energies. The Sr6Ta2O11 and Sr5.92Ta2.08O11.12 compositions in a wide range of aO2 are characterized by negligibly low fractions of electronic conductivity component. For the compositions of x > 0.15, a transition occurs from the electrolytic region to mixed oxygen-hole conductivity character (at aO2 = 0.21) at an increase in the oxygen activity.  相似文献   

18.
The phase separation characteristics of the Nd element from SIMFUEL (simulated spent fuel) by high temperature oxidation was investigated in terms of the temperature range between 1,150 and 1,300 °C and the initial concentration of Nd (x) in the pellets of (U1?x Nd x )O2 with x = 0.03, 0.037 and 0.09. The XRD and SEM results indicate that an increase of the heat treatment temperature increases the amount of the Nd-rich (U1?y Nd y )O2+v phase, while decreasing that of the Nd-poor (U1?z Nd z )3O8?w phase after heat treatment. Since the solubility of Nd in the (U1?z Nd z )3O8?w phase was almost constant regardless of the heat treatment temperature, the decrease of the Nd concentration in the Nd-rich (U1?y Nd y )O2+v phase with increasing heat treatment temperature seems to be due to a diffusion of the U ions from the Nd-poor (U1?z Nd z )3O8?w phase to the Nd-rich (U1?y Nd y )O2+v phase. The phase separation ratio of Nd was not nearly affected by the heat treatment temperature, but was increased with an increase in the initial concentration of Nd (x) in the pellets of (U1?x Nd x )O2.00. However, the phase separation ratio of U was slightly decreased with an increase in the heat treatment temperature and was strongly decreased with an increase in the initial concentration of Nd (x) in the pellets of (U1?x Nd x )O2.00.  相似文献   

19.
The effect of replacing Co3+ by Ga3+ and Fe3+ in the perovskite-related tetragonal phase Sr0.75Y0.25CoO2.625 with unit cell parameters: a=2ap, and c=4ap (314 phase) has been investigated. The 314 phase is formed by Sr0.75Y0.25Co1−xMxO2.625+δ, with x?0.375 for M=Ga and x?0.625 for M=Fe. High-resolution transmission electron microscopy and electron diffraction revealed frequent microtwinning in the iron-containing compounds, in contrast to the Ga-substituted 314 phases. Diffraction experiments and electron microscope images indicated that at higher Fe contents, 0.75?x?0.875, a disordered cubic perovskite structure forms. The crystal structures of Sr0.75Y0.25Co0.75Ga0.25O2.625 and Sr0.75Y0.25Co0.5Fe0.5O2.625+δ were refined using neutron powder diffraction data. It was found that the oxygen content of Sr0.75Y0.25Co0.5Fe0.5O2.625+δ is higher than in Fe-free 314 phase, so that δ corresponds to 0.076, whereas δ=0 in Sr0.75Y0.25Co0.75Ga0.25O2.625+δ. Magnetization measurements on the unsubstituted Sr0.7Y0.3CoO2.62 and Ga-substituted Sr0.75Y0.25Co0.75Ga0.25O2.625 compounds indicate the presence of a ferromagnetic-like contribution to the measured magnetization at 320 and 225 K, respectively, while replacing Co by Fe leads to the suppression of this contribution. A neutron diffraction study shows that the Sr0.75Y0.25Co0.5Fe0.5O2.625+δ compound is G-type antiferromagnetic at room temperature, whereas Sr0.75Y0.25Co0.75Ga0.25O2.625 does not exhibit magnetic ordering at room temperature.  相似文献   

20.
In this study, the formation and characteristics of Sr-doped praseodymium alkaline-earth cobalt oxide were studied as a function of the strontium content (x). PrBa1?x Sr x Co2O5+d ceramics with x?=?0.0, 1/16, 1/8, 1/4, and 1/2.5 were prepared by solid-state reaction method from Pr6O11, BaCO3, SrCO3, and Co3O4. The solid-state reaction mechanisms were analyzed by differential thermal analysis (DTA) and thermogravimetry (TG) techniques to characterize properly the distinct thermal events occurring during synthesis of layered perovskite-type PrBa1?x Sr x Co2O5+d oxides. The X-ray diffraction (XRD) results were used to assist the interpretation of DTA?CTG analyses. The TG, DTA, and XRD results for the mixtures showed that the solid-state reaction between precursors was completed in a temperature range between 800 and 1000?°C. The strong influence of strontium contents (x) on the solid-state reaction temperatures and PrBa1?x Sr x Co2O5+d structure was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号