首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2003,15(12):1038-1042
A novel gadolinium ion‐selective electrode based on the antibiotic omeprazole as membrane carrier was prepared. The electrode has a linear dynamic range between 1.0×10?1 and 1.0×10?5 M, with a Nernstian slope of 19.3 ± 0.3 mV decade?1 and a detection limit of 5.0×10?6 M. The potentiometric response is independent of the pH of the solution in the pH range 4.0–10.0. The electrode possesses the advantages of short conditioning time, fast response time and especially, very good selectivity over a large number of other cations. The electrode can be used for at least 2 months without any considerable divergence in potentials. It was used as an indicator electrode in potentiometric titration of Gd(III) ions with EDTA.  相似文献   

2.
《Analytical letters》2012,45(7):1014-1028
Abstract

In this work, we describe the construction, performance, and applications of an original ytterbium(III) sensor based on N1,N2-bis-[1-(2-hydroxy-1,2-diphenyl)ethylidene]ethanedihydrazide (BHDEH), which acts as a suitable carrier. Because it has a low detection limit of 4.2 × 10?7 M, the sensor response for the Yb(III) ion is Nernstian over a wide concentration range: four decades of concentration (1.0 × 10?6 to 1.0 × 10?2 M). The response time of the electrode is less than 10 s, it can be used in the pH range of 3.2–8.3, and its duration is at least 2 months without any considerable potential divergence. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. To investigate the sensor analytical applicability, it was tested as an indicator electrode in the potentiometric titration of Yb(III) solution with standard EDTA solution. The proposed electrode was also used to determine fluoride ions in mouthwash.  相似文献   

3.
A new way of decreasing the detection limit ‐ double deposition and stripping steps was proposed to determine trace amounts of gold(III) by anodic stripping voltammetry. Two carbon composite electrodes that differed drastically in their surface areas were used for the measurements. The calibration graph was linear from 1×10?9 to 1×10?8 mol L?1 following deposition time of 300 s at the first and the second electrode. The detection limit was found to be 2.3×10?10 and 1.4×10?11 mol L?1 for deposition time 600 and 2400 s, respectively. It is the lowest detection limit obtained so far for gold(III) determination in stripping voltammetry.  相似文献   

4.
A carbon paste electrode modified with chelating resin (ammino-isopropylmercaptan-type cross-linked chelating resins) for the voltammetric determination of gold(III) was characterized by cyclic voltammetry. The gold(III) ion is accumulated on the surface of the modified electrode only by the chelating effect of the modifier in the carbon paste, without application of a potential. After exchange of the medium the accumulated amount of gold(III) is determined by voltammetry in a blank electrolyte solution. The response depends on both the concentration of gold and the accumulation time. For a 5-min preconcentration time, a linear calibration graph was obtained in the range 3 × 10?8-1 × 10?6 M and the detection limit was about 1 × 10?8 M. A combination of chemical and electrochemical renewal allows the use of a single modified electrode in multiple analytical determinations over several days. For ten preconcentration—determination—renewal cycles [2 × 10?7 M Au(III)], the response could be reproduced with 4.7% relative standard deviation. Many parameters such as the composition of the paste and pH influence the response of the measurement. Many other metal ions have no or little effect on the determination of gold. The procedure was applied to the determination of gold in minerals, copper and anode mud, with good results.  相似文献   

5.
《Electroanalysis》2004,16(16):1330-1335
A poly(vinyl chloride) membrane sensor based on oxalic acid bis (cyclohexylidene hydrazide) as membrane carrier was prepared and investigated as a Cr(III)‐selective electrode. The electrode reveals a Nernstian behavior (slope 19.8±0.4 mV decade?1) over a wide Cr(III) ion concentration range 1.0×10?7–1.0×10?2 mol dm?3 with a very low limit of detection (i.e., down to 6.3×10?8 mol dm?3). The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 1.7–6.5. The electrode possesses advantage of very fast response, relatively long lifetime and especially good selectivity to wide variety of other cations. The sensor was used as an indicator electrode, in the potentiometric titration of chromium ion and in the determination of Cr(III) in waste water and alloy samples.  相似文献   

6.
Construction and feature of a nanocomposite modified carbon paste electrode for aluminum(III) ion determination based on N,N′-dipyridoxyl (1,2-cyclohexanediamine) (PYCA) as a novel selector material will be covered by this paper. The optimum composition, Nernstian slope/linear range/detection limit in the forms of calibration graph, response time, utilizable pH range, repeatability and precision of measurements of the aluminum(III) ion using the new fabricated Al3+-CPE was evaluated. The optimal composition which performed over Al+3 ion concentration range 1.0 × 10?8 mol L?1–1.0 × 10?1 mol L?1 with near-Nernstian slope equal 20.9 ± 0.2 mV decade?1 and low detection limit about 5.0 × 10?9 mol L?1, was formed of ionophore (PYCA 3 %), binder (paraffin oil 30 %), modifier [multi-wall carbon nanotubes (MWCNTs) 1 %] & [Nanosilica (NS) 0.5 %], and inert matrix (graphite powder 65.5). The request time to give rise Nernstian response of electrode for concentrations from 1.0 × 10?8 mol L?1 to 1.0 × 10?1 mol L?1 of Al3+ ion solution was estimated about ~6 s. The new Al3+-CPE was applied in pH range 2.0–5.0 with no consequential change in potential response. To verify the selectivity of electrode toward aluminum(III) ion in the presence of different metallic cations, matched potential method was used. The obtain results in analytical applications reflect the excellent ability of this electrode to play the role as endpoint indicator electrode in both titration and direct potentiometric measurements.  相似文献   

7.
A simple adsorptive cathodic stripping voltammetry method has been developed for antimony (III and V) speciation using 4‐(2‐thiazolylazo) – resorcinol (TAR). The methodology involves controlled preconcentration at pH 5, during which antimony(III) – TAR complex is adsorbed onto a hanging mercury drop electrode followed by measuring the cathodic peak current (Ip,c) at ?0.39 V versus Ag/AgCl electrode. The plot of Ip,c versus antimony(III) concentration was linear in the range 1.35×10?9–9.53×10?8 mol L?1.The LOD and LOQ for Sb(III) were found 4.06×10?10 and 1.35×10?9 mol L?1, respectively. Antimony(V) species after reduction to antimony(III) with Na2SO3 were also determined. Analysis of antimony in environment water samples was applied satisfactorily.  相似文献   

8.
《Analytical letters》2012,45(14):2710-2726
Abstract

A PVC membrane electrode for dysprosium(III) [Dy(III)] ions was constructed, having its basis on benzoxazoleguanidine (BG) as a suitable ionophore. The sensor presents a linear dynamic range of 1.0 × 10?6–1.0 × 10?1 M, with a Nernstian slope of 19.5 ± 0.4 mV decade?1 and a detection limit of 4.7 × 10?7 M. The response time is quick (less than 10 s). It can be used in the pH range of 3.3–8.4, and its duration is at least 2 mo without any considerable, noticeable potential divergence. The recommended sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, some transition, and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Dy(III) ions with EDTA. The membrane sensor also applied to the determination of concentration of Dy(III) ions in soil and sediment samples. Validation with certified reference materials (CRMs) was also carried out.  相似文献   

9.
2,5-Dioxo-4-imidazolidinyl was used as an excellent sensing material in the preparation of a PVC membrane for a Ce(III)-selective sensor. The electrode shows a good selectivity for the Ce(III) ion with respect to most common cations including alkali, alkaline earth, transition, and heavy metal ions. The developed sensor exhibits a wide linear response with a slope of 19.6?±?0.3 mV per decade over the concentration range of 1.0?×?10?6 to 1.0?×?10?1 M, while the illustrated detection limit is 5.7?×?10?7 M of Ce(III) ions. Moreover, it is concluded that the sensor response is pH-independent in the range of 3.1–9.8. The applications of the recommended electrode include the determination of concentration of Ce(III) ions in soil and sediment samples, validation with CRM's, and the Ce(III) ion potentiometric titration with EDTA as an indicator electrode.  相似文献   

10.
A new selective, sensitive, and rapid response microelectrode for microamount chromium(III) determination was developed. For the electrode preparation, fuchsin basic was electropolymerized onto a carbon microdisk electrode, and then diethylenetriamminepentaacetic acid (DTPA) was self‐assembled on the electrode surface by the reaction between DTPA and poly(fuchsin basic). The determination conditions were optimized. The electrode showed a linear response to Cr3+ ions in the concentration range of 1.0×10?6?1.0×10?4 M and exhibits a super‐Nernstian slope of 32.5±0.4 mV per decade. The detection limit is 3.6×10?7 M. The response time of the electrode is less than 10 s, and it can be used for at least 2 months with limited considerable divergences in its potentials. The proposed electrode was applied for monitoring the chromium ion level in wastewater of chromate industries.  相似文献   

11.
Carbon paste electrode modified with Carboxymethyl chitosan-graft-poly(1-cyanoethanoyl-4-acryloyl-thiosemcarbazide)copolymers(CMCS-PCEATS) as ionophore was constructed for potentiometric determination of aluminum (III) and the chelation between the ionophore and the aluminum (III) ions at the electrode surface was characterized using SEM, EDX, and IR analysis. Thermal stability of the prepared electrode before and after chelation with the metal ion was investigated. The highest performance was obtained with the electrode modified with 10 mg of the prepared copolymers plasticized with TCP (electrode I). Under the optimized provision, the electrode I shows Nernstian slope of 19.9?±?0.36 mV decade??1 over the concentration range from 1.0?×?10??6 to 1.0?×?10??2 mol L??1 with a detection limit of 1.0?×?10??6 mol L??1 and pH ranges from 3 to 8. The paste is enough stable for 37 days without any detected change in the potential. The proposed method is more potent in determination of Al(III) in both real water and pharmaceutical samples potentiometrically. The results obtained agreed with those obtained with spectrophotometer and inductive coupled plasma (ICP).  相似文献   

12.
An ISE for determining aluminum(III) in electroplating electrolytes is developed. Aluminon is used as the ionophore. The electrode response is linear in the range of Al(III) concentrations from 1 × 10?5 to 1 × 100 M. The detection limit for aluminum(III) is ~1 × 10?6 M. Most ions, except for iron(III) and fluoride, do not interfere with the determination of aluminum(III).  相似文献   

13.
Electrochemical methods represent an important class of widely used techniques for the detection of metal ions. The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. This study focused on the synthesis of a nano‐Fe(III)–Sud complex and its characterization using various spectroscopic and analytical tools, optimized using the density functional theory method, screened for antibacterial activity and evaluated for possible binding to DNA using molecular docking study. Proceeding from the collected information, nano‐Fe(III)–Sud was used further for constructing carbon paste and screen‐printed ion‐selective electrodes. The proposed sensors were successfully applied for the determination of Fe(III) ions in various real and environmental water samples. Some texture analyses of the electrode surface were conducted using atomic force microscopy. At optimum values of various conditions, the proposed electrodes responded towards Fe(III) ions linearly in the range 2.5 × 10?9–1 × 10?2 and 1.0 × 10?8–1 × 10?2 M with slope of 19.73 ± 0.82 and 18.57 ± 0.32 mV decade?1 of Fe(III) ion concentration and detection limit of 2.5 × 10?9 and 1.0 × 10?8 M for Fe(III)–Sud‐SPE (electrode I) and Fe(III)–Sud‐CPE (electrode II), respectively. The electrode response is independent of pH in the range 2.0–7.0 and 2.5–7.0, with a fast response time (4 and 7 s) at 25°C for electrode I and electrode II, respectively. Moreover, the electrodes also showed high selectivity and long lifetime (more than 6 and 3 months for electrode I and electrode II, respectively). The electrodes showed good selectivity for Fe(III) ions among a wide variety of metal ions. The results obtained compared well with those obtained using atomic absorption spectrometry.  相似文献   

14.
Electroluminescence is produced at an oxide-coated aluminum electrode during cathodic polarization of the electrode in an acetate solution containing nitrate and traces of europium(III). The europium(III) ion in the 5D0 state is the emitter. Linear log-log calibration plots are obtained for the range 1 × 10?8?1 × 10?5 M europium(III). A mechanism for the cathodic luminescence is proposed.  相似文献   

15.
A potassium ion-selective electrode based on a cobalt(II)-hexacyanoferrate(III) (CHCF) film-modified glassy carbon electrode is proposed. The electroactive film is introduced onto the glassy carbon electrode surface by electrodeposition of cobalt, which forms a thin CHCF film on subsequent anodic scanning in KClHCl solution (pH 5.0–5.5) containing K3Fe(CN)6. The thickness of the film on the electrode surface can be controlled by changing the electrodeposition time and the concentrations of cobalt(II) and Fe(CN)3?6 ions. The modified electrode exhibits a linear response in the concentration range 1 × 10?1 ?3 × 10?5 M potassium ion activity, with a near-Nernstian slope (48–54 mV per decade) at 25 ± 1°C. The detection limit is 1 × 10?5 M. The stability, response time and selectivity were investigated. The electrode exhibits good selectivity for potassium ion with the twelve cations investigated. The relative standard deviation is 1.5% (n=10). The effects of the thickness of the electroactive film and the pH of the solution on the electrode response were also investigated.  相似文献   

16.
In this paper, an electrochemical application of bismuth film modified glassy carbon electrode for azo-colorants determination was investigated. Bismuth-film electrode (BiFE) was prepared by ex-situ depositing of bismuth onto glassy carbon electrode. The plating potential was ?0.78 V (vs. SCE) in a solution of 0.15 mg mL?1 Bi(III) and 0.05 mg mL?1 KBr for 180 s. In the next step, a thin film of chitosan was deposited on the surface of bismuth modified glassy carbon electrode, thus the bismuth-chitosan thin film modified glassy carbon electrode (Bi-CHIT/GCE) was fabricated and compared with bare GCE and bismuth modified GCE. Azo-colorants such as Sunset Yellow and Carmoisine were determined on these electrodes by differential pulse voltammetry. Due to overlapping peaks of Sunset Yellow and Carmoisine, simultaneous determination of them is not possible, so net analyte signal standard addition method (NASSAM) was used for this determination. The results showed that coated chitosan can enhance the bismuth film sensitivity, improve the mechanical stability without caused contamination of surface electrode. The Bi-CHIT/GC electrode behaved linearly to Sunset Yellow and Carmoisine in the concentration range of 5×10?6 to 2.38×10?4 M and 1×10?6 to 0.41×10?4 M with a detection limit of 10 µM (4.52 µg mL?1) and 10 µM (5.47 µg mL?1), respectively   相似文献   

17.
《Electroanalysis》2004,16(24):2051-2057
A conducting polymer was electrochemically prepared on a Pt electrode with newly synthesized 3′‐(4‐formyl‐3‐hydroxy‐1‐phenyl)‐5,2′ : 5′,2″‐terthiophene (FHPT) in a 0.1 M TBAP/CH2Cl2 solution. The polymer‐modified electrode exhibited a response to proton and metal ions, especially Al(III) ions. The poly[FHPT] was characterized with cyclic voltammetry, EQCM, and applied to the analysis of trace levels of Al(III) ions. Experimental parameters affecting the response of the poly[FHPT] were investigated and optimized. Other metal ions in low concentration did not interfere with the analysis of Al(III) ions in a buffer solution at pH 7.4. The response was linear over the concentration range of 5.0×10?8–7.0×10?10 M, and the detection limit was 5.0×10?10 M using the linear sweep voltammetry (LSV). Employing the differential pulse voltammetry (DPV), the response was linear over the 1.0×10?9–5.0×10?11 M range and the detection limit was 3.0×10?11 M. The relative standard deviation at 5.0×10?11 M was 7.2% (n=5) in DPV. This analytical method was successfully verified for the analysis of trace amounts of Al(III) ions in a human urine sample.  相似文献   

18.
The study considers solubility in water, extractivity, and electrode properties of ionic liquids (IL), lauroyl tetrahexylammonium (THALS) and tetraoctylammonium lauroyl sarcosinate (TOALS). The values of solubility, found by potentiometry using ion-selective membranes of PVC-electrodes (ISE) have appeared to be 3.0 ± 0.4 mM and 0.011 ± 0.005 mM, for THALS and TOALS, respectively. Both IL quantitatively recover nitrophenol (99.9%) into chloroform from aqueous solutions in the pH range from 2 to 12. The application of IL as the active components of PVC-ISE enables the determination of lauroyl sarcosinate anion in the concentration range 1 × 10?2?C1 × 10?4 M for THALS and 1 × 10?2?C1 × 10?5 M for TOALS and the determination of mononitrophenols, 2,4-dinitrophenols and picrates (1 × 10?2 M?C1 × 10?5 M). A solid-state sensor based on screen-printed electrode modified by TOALS IL has been proposed. The electrode has been used for the determination of 4-nitrophenol in the concentration range 1 × 10?2?C1 × 10?5 M, the operational stability of the electrode is 10 days.  相似文献   

19.
A new chromium(III) PVC membrane sensor incorporating ptertiary‐butyl calix[4]arene as ionophore, potassium tetrakis as additive and dibutyl phthalate (DBP) as plasticizer was constructed. The electrode exhibited an excellent potentiometric response over a wide concentration range of 1.0×10?7–1.0×10?1 M with a Nernstian slope of 20±0.5 mV per decade. The detection limit was 5.0×10?8 M. The electrode showed a better performance over a pH range of 3.0–8.0, and had a short response time of about <15 s.The electrode was successfully applied to potentiometric titration of Cr (III) with EDTA and for direct determination of chromium(III) in waste water.  相似文献   

20.
《Analytical letters》2012,45(19):1557-1563
Abstract

Solid membranes of copper hexacyanoferrate (III) in Areldite are evaluated as thallium (I) sensitive electrode. The membrane electrode gave a linear near Normstian response to thallium (I) ions in the concentration range 10?1 - 5 × 10?4 M and can be used to estimate T1 (I) down to 10?4 M. The responses of the electrode is fast and steady potentials are obtained in less than a minute. The same membrane has been used over a period of six months without any appreciable drift in potential. The electrode can also be used satisfactory in partially non-aqueous media and in presence of a number of interfering ions. It is superior to the existing T1(I) solid membrane electrodes as it can function in alkaline range also.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号