首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate that in a single molecule magnet strongly coupled to electrodes the Kondo effect involves all magnetic excitations. This Kondo effect is induced by the quantum tunneling of the magnetic moment. Importantly, the Kondo temperature TK can be much larger than the magnetic splittings. We find a strong modulation of the Kondo effect as a function of the transverse anisotropy parameter or a longitudinal magnetic field. Both for integer and half-integer spin this can be used for an accurate transport spectroscopy of the magnetic states in low magnetic fields on the order of the easy-axis anisotropy parameter. We set up a relationship between the Kondo effects for successive integer and half-integer spins.  相似文献   

2.
We consider transport through a single-molecule magnet strongly coupled to metallic electrodes. We demonstrate that, for a half-integer spin of the molecule, electron and spin tunneling cooperate to produce both quantum tunneling of the magnetic moment and a Kondo effect in the linear conductance. The Kondo temperature depends sensitively on the ratio of the transverse and easy-axis anisotropies in a nonmonotonic way. The magnetic symmetry of the transverse anisotropy imposes a selection rule on the total spin for the occurrence of the Kondo effect which deviates from the usual even-odd alternation.  相似文献   

3.
Resonant quantum tunneling of the Néel vector between nonequivalent magnetic wells is investigated theoretically for a nanometer-scale single-domain antiferromagnet with biaxial crystal symmetry in the presence of an external magnetic field applied along the easy anisotropy axis, based on the two-sublattice model. Both the Wentzel-Kramers-Brillouin exponent and the preexponential factors are evaluated in the instanton contribution to the tunneling rate for finite and zero magnetic fields by applying the instanton technique in the spin-coherent-state path-integral representation, respectively. The quantum interference or spin-parity effects induced by the topological phase term in the Euclidean action are discussed in the rate of quantum tunneling of the Néel vector. In the absence of an external applied magnetic field, the effect of destructive phase interference or topological quenching on resonant quantum tunneling of the Néel vector is evident for the half-integer excess spin antiferromagnetic nanoparticle. In the weak field limit, the tunneling rates are found to oscillate with the external applied magnetic field for both integer and half-integer excess spins. We discuss the experimental condition on the applied magnetic field which may allow one to observe the topological quenching effect for nanometer-scale single-domain antiferromagnets with half-integer excess spins. Tunneling behavior in resonant quantum tunneling of the magnetization vector between nonequivalent magnetic wells is also studied for a nanometer-scale single-domain ferromagnet by applying the similar technique, but in the large noncompensation limit. Received 4 June 1999  相似文献   

4.
The effect of localized spins on the quantum coherence in solids is discussed. A quantum dot with an odd number of electrons can be a model system for a localized spin. It is experimentally shown that a spin flip scattering by a quantum dot pulls the trigger of quantum decoherence. On the other hand, spin flip scattering is the basic process to construct the Kondo singlet state around a magnetic impurity. Through an interference effect of the Kondo state (the Fano–Kondo effect) in a side-coupled dot system, we show experimentally that the Kondo singlet state is quantum mechanically coherent. The analysis of the Fano–Kondo lineshape indicates the locking of the phase shift to π/2, which is in agreement with theoretical predictions. The Fano–Kondo effect is also observed in an Aharonov–Bohm ring, in which a quantum dot is embedded, and also indicates the phase shift locking to π/2.  相似文献   

5.
We show that it is possible to topologically induce or quench the Kondo resonance in the conductance of a single-molecule magnet (S>1/2) strongly coupled to metallic leads. This can be achieved by applying a magnetic field perpendicular to the molecule easy axis and works for both full- and half-integer spin cases. The effect is caused by the Berry-phase interference between two quantum tunneling paths of the molecule's spin. We have calculated the renormalized Berry-phase oscillations of the Kondo peaks as a function of the transverse magnetic field as well as the conductance of the molecule by means of the poor man's scaling method. We propose to use a new variety of the single-molecule magnet Ni4 for the experimental observation of this phenomenon.  相似文献   

6.
We study a symmetrical double quantum dot (DD) system with strong capacitive interdot coupling using renormalization group methods. The dots are attached to separate leads, and there can be a weak tunneling between them. In the regime where there is a single electron on the DD the low-energy behavior is characterized by an SU(4)-symmetric Fermi liquid theory with entangled spin and charge Kondo correlations and a phase shift pi/4. Application of an external magnetic field gives rise to a large magnetoconductance and a crossover to a purely charge Kondo state in the charge sector with SU(2) symmetry. In a four-lead setup we find perfectly spin-polarized transmission.  相似文献   

7.
We measure transport through gold grain quantum dots fabricated using electromigration, with magnetic impurities in the leads. A Kondo interaction is observed between dot and leads, but the presence of magnetic impurities results in a gate-dependent zero-bias conductance peak that is split due to a RKKY interaction between the spin of the dot and the static spins of the impurities. A magnetic field restores the single Kondo peak in the case of an antiferromagnetic RKKY interaction. This system provides a new platform to study Kondo and RKKY interactions in metals at the level of a single spin.  相似文献   

8.
Single electron tunneling is studied in a many electron quantum dot in high magnetic fields. For such a system multiple transitions of the spin configuration are theoretically predicted. With a combination of spin blockade and Kondo effect we are able to detect five regions with different spin configurations. Transitions are induced with changing electron numbers.  相似文献   

9.
We report an electron spin resonance (ESR) study on single crystals of the heavy fermion metal YbRh2Si2 which shows pronounced non-Fermi liquid behavior related to a close antiferromagnetic quantum critical point. It is shown that the observed ESR spectra can be ascribed to a bulk Yb3+ resonance. This is the first observation of ESR of the Kondo ion itself in a dense Kondo lattice system. The ESR signal occurs below the Kondo temperature (T(K)) which thus indicates the existence of large unscreened Yb3+ moments below T(K). We observe the spin dynamics as well as the static magnetic properties of the Yb3+ spins to be consistent with the results of nuclear magnetic resonance and magnetic susceptibility.  相似文献   

10.
We investigate the time-dependent Kondo effect in a single-molecule magnet (SMM) strongly coupled to metallic electrodes. Describing the SMM by a Kondo model with large spin S>1/2, we analyze the underscreening of the local moment and the effect of anisotropy terms on the relaxation dynamics of the magnetization. Underscreening by single-channel Kondo processes leads to a logarithmically slow relaxation, while finite uniaxial anisotropy causes a saturation of the SMM's magnetization. Additional transverse anisotropy terms induce quantum spin tunneling and a pseudospin-1/2 Kondo effect sensitive to the spin parity.  相似文献   

11.
We propose a mechanism where high entanglement between very distant boundary spins is generated by suddenly connecting two long Kondo spin chains. We show that this procedure provides an efficient way to route entanglement between multiple distant sites. We observe that the key features of the entanglement dynamics of the composite spin chain are well described by a simple model of two singlets, each formed by two spins. The proposed routing mechanism is a footprint of the emergence of a Kondo cloud in a Kondo system and can be engineered and observed in varied physical settings.  相似文献   

12.
We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof that-surprisingly-even deep in the quantum regime the nuclear spins remain in good thermal contact with the lattice phonons. We propose a simple model for how T-independent tunneling fluctuations can relax the nuclear polarization to the lattice that may serve as a framework for more sophisticated theories.  相似文献   

13.
The Kondo effect in quantum dots (QDs)-artificial magnetic impurities-attached to ferromagnetic leads is studied with the numerical renormalization group method. It is shown that the QD level is spin split due to the presence of ferromagnetic electrodes, leading to a suppression of the Kondo effect. We find that the Kondo effect can be restored by compensating this splitting with a magnetic field. Although the resulting Kondo resonance then has an unusual spin asymmetry with a reduced Kondo temperature, the ground state is still a locally screened state, describable by Fermi liquid theory and a generalized Friedel sum rule, and transport at zero temperature is spin independent.  相似文献   

14.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.  相似文献   

15.
Linear and nonlinear transport through a quantum dot that is weakly coupled to ideal quantum leads is investigated in the parameter regime where charging and geometrical quantization effects coexist. The exact eigenstates and spins of a finite number of correlated electrons confined within the dot are combined with a rate equation. The current is calculated in the regime of sequential tunneling. The analytic solution for an Anderson impurity is given. The phenomenological charging model is compared with the quantum mechanical model for interacting electrons. The current-voltage characteristics show Coulomb blockade. The excited states lead to additional fine-structure in the current voltage characteristics. Asymmetry in the coupling between the quantum dot and the leads causes asymmetry in the conductance peaks which is reversed with the bias voltage. The spin selection rules can cause a ‘spin blockade’ which decreases the current when certain excited states become involved in the transport. In two-dimensional dots, peaks in the linear conductance can be suppressed at low temperatures, when the total spins of the corresponding ground states differ by more than 1/2. In a magnetic field, an electron number parity effect due to the different spins of the many-electron ground states is predicted in addition to the vanishing of the spin blockade effect. All of the predicted features are consistent with recent experiments.  相似文献   

16.
We examine the exchange Hamiltonian for magnetic adatoms in graphene with localized inner shell states. On symmetry grounds, we predict the existence of a class of orbitals that lead to a distinct class of quantum critical points in graphene, where the Kondo temperature scales as TK∝|J-Jc|1/3 near the critical coupling Jc, and the local spin is effectively screened by a super-Ohmic bath. For this class, the RKKY interaction decays spatially with a fast power law ~1/R7. Away from half filling, we show that the exchange coupling in graphene can be controlled across the quantum critical region by gating. We propose that the vicinity of the Kondo quantum critical point can be directly accessed with scanning tunneling probes and gating.  相似文献   

17.
We investigate the effects induced by ferromagnetic contacts attached to a serial double quantum dot. Spin polarization generates effective magnetic fields and suppresses the Kondo effect in each dot. The superexchange interaction J(AFM), tuned by the interdot tunneling rate t, can be used to compensate the effective fields and restore the Kondo resonance when the contact polarizations are aligned. As a consequence, the direction of the spin conductance can be controlled and even reversed using electrostatic gates alone. Our results demonstrate a new approach for controlling spin-dependent transport in carbon nanotube double dot devices.  相似文献   

18.
We investigate adiabatic pumping through a quantum dot with a single level in the mixed-valence and Kondo regimes using the slave boson mean field approximation. The pumped current is driven by a gauge potential due to time-dependent tunneling barriers as well as by the modulation of the Friedel phase. The sign of the former contribution depends on the strength of the Coulomb interaction. Under finite magnetic fields, the separation of the spin and charge currents peculiar to the Kondo effect occurs.  相似文献   

19.
We find that Kondo resonant conductance can occur in a quantum dot in the Coulomb blockade regime with an even number of electrons N. The contacts are attached to the dot in a pillar configuration, and a magnetic field B( perpendicular) along the axis is applied. B( perpendicular) lifts the spin degeneracy of the dot energies. Usually, this prevents the system from developing the Kondo effect. Tuning B( perpendicular) to the value B(*) where levels with different total spin cross restores both the degeneracy and the Kondo effect. We analyze a dot charged with N = 2 electrons. Coupling to the contacts is antiferromagnetic due to a spin selection rule and, in the Kondo state, the charge is unchanged while the total spin on the dot is S = 1/2.  相似文献   

20.
We have performed spin-resolved measurements on a Kondo impurity in the presence of RKKY-type exchange coupling. By placing manganese phthalocyanine (MnPc) molecules on Fe-supported Pb islands, a Kondo system is devised which is exchange coupled to a magnetic substrate via conduction electrons in Pb, inducing spin splitting of the Kondo resonance. The spin-polarized nature of the split Kondo resonance and a spin filter effect induced by spin-flip inelastic electron tunneling are revealed by spin-polarized scanning tunneling microscopy and spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号